Chemical Vapor Deposition (CVD)

Processes: gift of SiO₂ - Expose Si to steam => uniform insulating layer... clean and simple

or metal film growth : high vacuum, single element... clean and simple

... Contrast with **CVD:** toxic, corrosive gas flowing through valves, *T* up to 1000°C, multiple, simultaneous chemical reactions,

gas dynamics, dead layers...

Insulator Si0_x, wet growth whose idea was it?

Figure removed for copyright reasons.

Figure 4-1 in Ohring, M. *The Materials Science of Thin Films*. 2nd ed. Burlington, MA: Academic Press, 2001. ISBN: 0125249756.

CVD is the single most widely used deposition method in IC manufacture

Four reaction chambers (similar to those for Si oxidation)

Control *T*, gas mixture, pressure, flow rate

3.155J/.152J

CVD is film growth from vapor/gas phase

via chemical reactions in gas and on substrate:

e.g. SiH₄ (g) \rightarrow Si (s) + 2H₂ (g)

Do not want Si to nucleate *above* substrate (*homogeneous nucleation*), but **on** substrate surface (*heterogeneous nucleation*).

Laminar flow pipe.

Conductance $\propto A/L$

3.155J/.152J

Several processes in series

Electrical analogy: $J_1 = J_2$, $R = R_1 + R_2$ $--\sqrt[]{}/\sqrt[]{}$ $G = 1/R = G_1 G_2 / (G_1 + G_2)$

Two processes in series; slowest one limits film growth

3.155J/.152J

$$J_2 = k_s C_s = \frac{h_g k_s}{h_g + k_s} C_g$$

Film growth rate
$$\equiv v = J \left(\frac{\#}{\operatorname{area} - t} \right) \frac{1}{N_f \left(\frac{\#}{\operatorname{vol}} \right)},$$

$$v = \frac{h_g k_s}{h_g + k_s} \frac{C_g}{N_f} = \frac{C_g / N_f}{\frac{1}{h_g} + \frac{1}{k_s}}$$

v (thickness/time)

Slower process controls growth

$$v = \frac{C_g / N_f}{\frac{1}{h_g} + \frac{1}{k_s}}$$

Examine these 2 limits of growth: h_g limited or k_s limited...

Reaction limited growth,

Transport limited growth,

$$h_{\rm g} \ll k_{\rm s}$$
:

$$v = \frac{k_s C_g}{N_f} = \frac{C_g}{N_f} k_0 e^{-\frac{\Delta G}{kT}}$$

Transport limited growth :

Most CVD is done in this limit where <u>gas dynamics</u>, <u>reactor design are important</u>.

Remedy for boundary layer

More uniform $u_{\rm g}, C_{\rm g} \Rightarrow$ uniform film growth rate , v

Reaction limited growth :

$$v = \frac{k_s C_g}{N_f} = \frac{C_g}{N_f} k_0 e^{-\frac{\Delta G}{kT}}$$

ΔG = free energy change in reaction

 $(\Delta G \cong \Delta H \text{ for gas})$

becasue gas reaction no ΔS)

Choice of reactants and temperature are critical

CVD FILM GROWTH

GAS TRANSPORT-LIMITED

REACTION-RATE LIMITED

$$v = \frac{k_s C_g}{N_f} = \frac{C_g}{N_f} k_0 e^{-\frac{\Delta G}{kT}}$$

 $\Delta G = \text{free energy change in reaction}$ $\Delta G = \Delta H - T\Delta S$ $(\Delta G \cong \Delta H \text{ for gas} \rightarrow \text{no } \Delta S \text{ for}$ gas reaction)

$$v \sim e^{-\Delta H_{kT}}$$

Review CVD

We saw...

CVD is film growth from vapor/gas phase via chemical reactions gas and at substrate:

e.g. SiH₄ (g) \rightarrow Si (s) + 2H₂ (g)

in

Some CVD reactions

Silane pyrolysis

(heat induced reaction)

 $\operatorname{SiH}_{4}(g) \rightarrow \operatorname{Si}(g) + 2\operatorname{H}_{2}(g) \quad (650^{\circ}\mathrm{C})$

This \Rightarrow poor Si at 1 atm, so use low pressure

Silane oxidation (450°C)

 $\operatorname{SiH}_{4}(g) + \operatorname{O}_{2}(g) \rightarrow \operatorname{SiO}_{2}(s) + 2\operatorname{H}_{2}(g)$

(by LPCVD for gate oxide)

(Si-tetrachloride actually much more complex than this; 8 different compounds are formed, detected by RGA)

etch

Some CVD reactions (cont.)

Doping

Phosphine

 $2PH_3(g) \rightarrow 2P(s) + 3H_2(g)$

Diborane

$$B_2H_6(g) \rightarrow 2B(s) + 3H_2(g)$$

Si-nitride compound formation

 $3 \operatorname{SiCl}_{2}H_{2}(g) + 4\operatorname{NH}_{3}(g) \rightarrow \operatorname{Si}_{3}\operatorname{N}_{4}(s) + 6\operatorname{H}_{2}(g) + 6\operatorname{HCl}(g) \quad (750^{\circ} \text{ C})$ (dichloro-silane) rate

GaAs growth

Trimethyl Ga (TMG) reduction

$$(CH_3)_3 Ga + H_2 \rightarrow Ga (s) + 3CH_4$$

 $c_1 c_2^2$ SiCl₄ H₂

Least abundant element on surface limits growth velocity

Or
$$As_4(g) + As_2(g) + 6 GaCl(g) + 3 H_2(g) \xrightarrow{750^{\circ}C} 6 GaAs(s) + 6 HCl g$$

3.155J/.152J

Arsene

 $2AsH_3 \rightarrow 2As(s) + 3H_2$

How can you select process parameters to get desired product and growth characteristics?

 $SiH_4(g) \rightarrow SiH_2(g) + H_2(g)$ Three unknown pressures Consider: $P_{\text{tot}} = P_{\text{SiH}_4} + P_{\text{H}_2} + P_{\text{SiH}_2}$ 1) Total pressure = \sum partial *P*s ...still have 2 unknown Ps $\frac{P_{\text{SiH}_2} + P_{\text{SiH}_4}}{4P_{\text{SiH}_4} + 2P_{\text{SiH}_2} + 2P_{\text{H}_2}} = const$ Conservation of atoms $\frac{Si}{H} =>$ 2) ...still have 1 unknown P $P_{\rm molecule} \propto N_{\rm molecule}$ 3) "Equilibrium constant", K (cf. Law of mass action) $K \equiv \frac{P_{\text{H}_2} \cdot P_{\text{SiH}_2}}{P_{\text{SiH}_4}} = K_0 e^{\frac{\Delta G}{kT}}$ rate $\begin{pmatrix} \text{rate} \\ c_1 c_2^2 \\ c_2 \end{pmatrix}$ (And similarly for each reaction.) SiCl₄ H_{2} These 3 equations provide a *starting* place for growth parameters.

(Many equations for real systems; done on computer)

Do a run, analyze results, ...tweak process. Wed., Oct. 12, 2005 19

3.155J/.152J

K indicates a **bias** *at equilibrium* in the reaction toward the products(different molecular species)

 $K P_{\text{SiH}_4} = P_{\text{H}_2} \cdot P_{\text{SiH}_2}$

Exercise

Assume reaction: $AB \rightarrow A + B$ $P_{tot} = 1 \text{ atm}, T = 1000 \text{ K},$ $K = 1.8 \times 10^9 \text{ Torr} \times \exp(-2 \text{ eV} / k_B T) = 0.153$

Assume $P_A \approx P_B$ find P_{AB}

Solution:
$$K = \frac{P_A P_B}{P_{AB}} = 0.153$$

and $P_{tot} = P_A + P_B + P_{AB}$, $P_A \approx P_B$. \therefore 760 Torr = $2P_A + P_{AB}$
 $P_A^2 = 0.153 P_{AB} = 0.153 (760 - 2 P_A)$, quadratic $\rightarrow P_A = 10.8$ Torr = P_B ,
 $P_A^2 + 0.306P_A - 0.153 \times 760 = 0$
so $P_{AB} = 738$ Torr

Small value of K, 0.153 Torr, implies that at equilibrium,

the product of the right-hand side partial pressures Is but 15% of the reactant (left-hand-side) partial pressure; the reaction may not produce much in equilibrium. What if you change *T*?

3.155J/.152J

Atmospheric Pressure CVD: APCVD

(little used today, but illustrative)

High *P*, small $\lambda \Rightarrow$ slow mass transport, large reaction rates;

film growth limited by mass transfer, boundary layer;

(quality of APCVD Si from silane is poor, better for dielectrics).

Example:

 $SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2OT = 240 - 450^{\circ}C$

Done in N₂ ambient (low partial pressure of active gas, reduces film growth rate)

add 4 - 12% PH_3 to make silica flow, planarize.

Low Pressure CVD (LPCVD) for dielectrics and semiconductors

Equilibrium not achieved at low *P* where (molecular flow, few collisions).

$$\frac{\lambda}{L} = K_n > 1 \qquad \qquad \lambda = \frac{k_B T}{\sqrt{2} \pi d^2 P}$$

lower P => higher D_g , h_g ; this improves transport reduces boundary layer, extends reaction-controlled regime (which is where you operate)

Low Pressure CVD (LPCVD) for dielectrics and semiconductors

If hot-wall reactor

 \Rightarrow uniform T distribution but surface of reactor gets coated. So system must be dedicated to 1 species to avoid contamination.

If cold-wall reactor

Reduce reaction rate, reduce deposition on surfaces. For epi Si.

All poly-Si is done by hot-walled LPCVD; good for low pin-hole SiO₂, conformality

Figure removed for copyright reasons.

Figure 9-4b in Plummer et al., 2000.

Low Pressure CVD (LPCVD) for dielectrics and semiconductors

In such non-equilibrium, large λ , reactant-starved cases, growth rate can be controlled by reaction kinetics

LPCVD is kinetically throttled; transport-rate controls film growth

Silane pyrolysis $SiH_4(g) \rightarrow Si(s) + 2H_2(g)$ $T = 575 - 650^{\circ}C$

10 - 100 nm/min

(APCVD is at equilibrium; transport limited)

LPCVD

Requires no carrier gas

Fewer gas-phase reactions, fewer particulates

Eliminates boundary-layer problem

Lower $p \Rightarrow \text{larger } D_q$, extends reaction limited regime

Good conformal growth (unlike sputtering or other PVD methods which are more directional)

Strong *T* dependence to reaction growth rate.

Easier to control *T* with hot-walled furnace.

3.155J/.152J

R.F. Plasma-enhanced CVD (PECVD) for dielectric

MOS metallization: avoid contact interaction betw. Al & Si, SiO₂, \therefore *T* < 450°C

At low *T*, surface diffusion is slow,

must supply kinetic energy for surface diffusion.

Plasma provides that energy...and enhances step coverage.

What is a plasma? Ionized noble gas, accelerated by AC (RF) or DC voltage, collides with active species in gas and at surface, importing E_{kin}

Metal CVD

Step coverage is important for electric contacts.

 $WF_6 + 3H_2 \rightarrow W + 6 HF$

 $\Delta G \approx 70 \text{ kJ} / \text{mole} (0.73 \text{ eV/atom})$

below 400°C

Figure removed for copyright reasons.

Table 4-1 in Ohring, 2001.

When a system undergoes a process in which only heat energy, dQ, and pV work occur at constant T, then dG = Vdp

$$dQ = TdS \qquad \longleftarrow \qquad Vdp$$

$$dG = Nk_B T \frac{dp}{p}$$
 or $RT \frac{dp}{p}$

$$\int_{A}^{R} dG = RT \int_{A}^{R} d\ln(p) \Longrightarrow G_{B} - G_{A} = RT \ln(p_{B} / p_{A})$$

$$\exp\left(-\frac{dG}{RT}\right) \propto \frac{p_B}{p_A}$$

Define this ratio $p_{\rm B}/p_{\rm A}$, as K

For multiple reagents:

$$K \equiv \frac{P_{\mathrm{H}_{2}} \cdot P_{\mathrm{SiH}_{2}}}{P_{\mathrm{SiH}_{4}}} = K_{0}e^{-\frac{\Delta G}{kT}}$$

Entropy of mixing, $dS_{mix} = -RN_i \ln(N_i)$, leads to similar result

3.155J/.152J