

Effect of oxidation of on diffusion	of Si Plummer Fig. 7.36	
B and P observed to diffuse faster when Si surface is oxidized, Sb slower. Why? So far we have concentrated on diffusion by vacancy mechanism	Figure removed for copyright reasons. Please see: Figure 7-36 in Plummer et al., 200	0.
Different behavior of B and Sb under oxidation suggests a different mechanism may dominate in these two dopants		
3.155J/6.152J September 21, 2005	25	

