

How are shallow doped layers made?

1) Predeposition: controlled number of dopant specles at surface

2) Drive-in process: heat substrate after predeposition, diffusion determines Junction depth, sharpness

Need sharper diffusion profiles:

Pre-deposition \& diffusion

apparatus

Figure removed for copyright reasons.

Please see: Figures 4.26-4.28 in Ghandi, S. VLSI Fabrication Principles: Silicon and Gallium Arsenide. 2nd ed. New York, NY: Wiley-Interscience, 1994. ISBN: 0471580058.

Later... Ion implantation

$3.155 \mathrm{~J} / 6.152 \mathrm{~J}$
3
September 21, 2005

Concept of Diffusion

Initial state
a) Gas diffusion

$$
F=U-T S .
$$

If no chem'l interaction with air:

$$
F=-T S
$$

Gas disperses, fills all possible states randomly.

b) $I=\frac{V}{R} \quad J=\sigma E=\sigma\left(-\frac{\partial \phi}{\partial z}\right)$

Electric potential gradient

$$
\Rightarrow \text { charge flow }
$$

Electrons drift down potential gradient here ϕ is imposed from outside
c) Mass (or heat) flow J, due to concentration gradient
$J(\# /$ area $\cdot t)=D\left(-\frac{\partial c}{\partial z}\right)$

These Eqs => time evolution of some initial conditions \& boundary conditions 3.155J/6.152J

September 21, 2005

Atomistic picture of diffusion in solids

See web site for movies:
http://www.tf.uni-kiel.de/matwis/amat/def_en/index.html

Also possible is direct exchange ($x=$ broken bond)

Higher energy barrier or break more bonds $=>$ lower value of $D=D_{0} \exp (-E / k T)$

Solubility limits

September 21, 2005

Solubility limits

Figure removed for copyright reasons.

Please see:Figure 2-4 in Campbell, S. The Science and Engineering of Microelectronic Fabrication. 1st ed. New York, NY: Oxford University Press, 1996. ISBN: 0195105087.

Analytic Solution to Diffusion Equations,

$$
\text { Fick II: } \quad \frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial z^{2}}
$$

There are many different solutions to this or any DE; the correct solution is the one that satisfies the BC.

Steady state, $d c / d t=0$
Implies either a) $\boldsymbol{D}=\mathbf{0}$ $c(z)$ may be curved
or b) $d^{2} c / d z^{2}=0$
$c(x)$ linear

In oxidation we assumed steady state :
O_{2} diffusion through SiO_{2}, where
flux,$J=-D \frac{\partial C}{\partial z}=-D b$, is same everywhere.
Not necessarily so in diffusion where
non-linear $c(z)$ can exist and be frozen in at $D=0$

For solutions, boundary condition, consider classical experiment:
Diffusion couple: thin dopant layer on rod face,
press 2 identical pieces together, heat.
Then study diffusion profile in sections.

September 21, 2005

Analytic Solution to Diffusion Equations

$$
J=-D \frac{\partial c}{\partial z}, \quad \frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial z^{2}}
$$

I. " Drive in" of fixed amount, Q, of dopant; solution is Gaussian

Dose, Q, amount of dopant in sample, is constant. $\int_{-\infty}^{\infty} C(z, t) d z=Q=$ const. (\# /area)

[^0]Solutions for other I.C./B.C. can be obtained by superposition:
II. Limitless source
of dopant
(e.g. growth in presence of vapor)

$$
\begin{gathered}
C_{\mathrm{imp}}(z, t)=\frac{2}{\sqrt{\pi}} \int_{0}^{u=\frac{z}{2 \sqrt{D t}}} \exp \left[-\xi^{2}\right] d \xi \equiv \operatorname{erf}(\mathrm{u})=\operatorname{erf}\left(\frac{z}{2 \sqrt{D t}}\right) \\
\xi^{2}=\frac{z^{2}}{4 D t} \rightarrow \frac{\left(z-z_{0}\right)^{2}}{4 D t}
\end{gathered}
$$

$\frac{d C(z)}{d t}=-\frac{d}{d z} D\left(-\frac{\partial C}{\partial z}\right) \quad$ Fick II
\ldots or if D is constant $\frac{d C(z, t)}{d t}=D \nabla^{2} C(z, t)$
Time evolution of some initial conditions \& boundary conditions

But measured diffusion profiles are rarely as simple as Gaussian or erfc:

Note:
Log(erfc)
\& Log(gaussian)
look more alike
than non-Logs
Please see: Figure 7-28 in Plummer, J., M. Deal, and P. Griffin. Silicon VLSI Technology: Fundamentals, Practice, and Modeling. Upper Saddle River, NJ: Prentice Hall, 2000. ISBN: 0130850373.

Why is diffusion enhanced at high concentration?

Internal \boldsymbol{E} fields alter Fick's Law

Heavily doped layer can generate its own field
due to displacement of mobile carriers from ionized dopants:

\boldsymbol{E} enhances diffusion of A^{-}to right, (also down concentration gradient).

$$
\begin{array}{|l}
J_{\text {mass }}=-\underset{\text { diffusion }}{-D \frac{\partial C}{\partial z}}+\underset{\mathbf{A}^{*} \text { drift }}{C \mu \vec{E}} \equiv D\left[-\frac{\partial C}{\partial z}+\frac{C q \vec{E}}{k T}\right]
\end{array} \quad\left[\begin{array}{cl}
\mu=\frac{D q}{k T} & \begin{array}{c}
\text { Einstein relation } \\
\text { from } \\
\text { Brownian motion }
\end{array}
\end{array}\right]
$$

Neutral and charged impurities, dopants

If impurity is Gp. IV (e.g. Ge): uncharged, no e or h But if impurity $=B, P$ As... it will be charged:

So vacancies can be charged

For small dopant concentration, different diffusion processes are independent, but generally:

$D_{0} e^{\frac{E a}{k T}}=D \underset{\text { electrons }}{\Rightarrow D^{0}+D^{1-}} \frac{n}{n_{i}}+D^{2-}\left(\frac{n}{n_{i}}\right)^{2}+\ldots \quad D^{+}\left(\frac{p}{p_{i}}\right)+D^{2+}\left(\frac{p}{p_{i}}\right)^{2}+\ldots$

$\left.\begin{array}{l} \text { (these } D^{p} \text { are NOT } \\ \text { same as single } \\ \text { activation energy } \\ \text { values) } \end{array}\right\}$	Intrinsic Diffusivities and Activation Energies of Substitutional Diffusers in Silicon*							
	P			As	Sb	B	Al	Ga
	$\mathrm{D}_{\mathrm{i}}{ }^{\circ}$	$\begin{aligned} & \mathrm{D}_{\mathrm{o}} \\ & \mathrm{E}_{0} \end{aligned}$	3.85 3.66	0.066 3.44	0.214 3.65	0.037 3.46	1.385 3.41	$\begin{gathered} 0.374 \\ 3.39 \end{gathered}$
	D_{1}^{+}	D_{0}	-	-	-	0.76	2480	28.5
		E_{0}	-	-	-	3.46	4.20	3.92
	D_{i}	dor	4.44 4.0	22.9 4.1	13 4.0	-	-	-
		$\mathrm{E}_{\text {o }}$	4.37	-	-	-	-	-
September 21, 2005								${ }_{s i} E_{\text {in in }}$ ck:

Power series representation; higher orders in \boldsymbol{n} descrilbe dopant-dopant interactions
[Higher activation energy for charged vacancy diffusion; prefactor is greater]

Figure by MIT OCW.
"What is n ?"

$$
D^{\text {off }}=D^{0}+D^{-}\left(\frac{n}{n_{i}}\right)+D^{2-}\left(\frac{n}{n_{i}}\right)^{2}+\ldots+D^{+}\left(\frac{p}{n_{i}}\right)+D^{2+}\left(\frac{p}{n_{i}}\right)^{2}+\ldots
$$

\boldsymbol{n} is local free electron concentration in host. $n \geq n_{i}$ always

$$
n \approx \frac{N_{D}}{2}+\sqrt{\left(\frac{N_{D}}{2}\right)^{2}+n_{i}^{2}}
$$

$$
\text { So clearly, } D^{\text {eff }}=D^{0}+D^{-}\left(n / n_{\mathrm{i}}\right)+\ldots \text { can be } \gg D=D_{0} \exp \left(-E_{\mathrm{VD}} / k T\right)
$$

(provided D^{1-} etc not too small)
For intrinsic semiconductor or $N_{\mathrm{D}} \ll n_{\mathrm{i}}, n=p=n_{\mathrm{i}}$

(Single-actlvatlon-energy value: $D=1.5 \times 10^{-15}$)
3.155J/6.152J

19
September 21, 2005

Exercise

Calculate diffusivity of P in Si at $1000^{\circ} \mathrm{C}$ for
a) $c_{P}<n_{i}$
b) $c_{P}=4 \times 10^{19} \mathrm{~cm}^{-3}$
c) compare diffusion length b) with uncharged estimate
a) $c_{P}<n_{i}=10^{19}$ from Fig 1.16

Figure removed for copyright reasons.

Please see: Figure 1.16 in Plummer et al., 2000.
3.155J/6.152J

September 21, 2005

Exercise

Calculate diffusivity of P in Si at $1000^{\circ} \mathrm{C}$ for
a) $c_{P}<n_{i} \quad$ b) $c_{P}=4 \times 10^{19} \mathrm{~cm}^{-3}$
c) compare diffusion length b) with uncharged estimate

Exercise

Calculate diffusivity of P in Si at $1000^{\circ} \mathrm{C}$ for
a) $c_{P}<n_{i}$
b) $c_{P}=4 \times 10^{19} \mathrm{~cm}^{-3}$
c) compare diffusion length b) with uncharged estimate
b) $\quad C_{\mathrm{P}}=N_{D}=4 \times 10^{19} \frac{n \approx \frac{N_{D}}{2}+\sqrt{\left(\frac{N_{D}}{2}\right)^{2}+n_{i}^{2}}}{\text { Plummer, Eq. } 1.16}=10^{19}+\sqrt{4 \times 10^{38}+10^{38}}=4.24 \times 10^{19} \mathrm{~cm}^{-}$ $D=D_{P}^{0}+D_{P}^{-}\left(\frac{n}{n_{i}}\right)=1.3 \times 10^{-14}+6.63 \times 10^{-16}\left(\frac{4.24}{1}\right)=1.57 \times 10^{-14}\left(\mathrm{~cm}^{2} s^{-1}\right) \quad$ vs 1.37
c) $a=2 \sqrt{D t}, \quad 1 \mathrm{hr} \Rightarrow a_{0}=2 \sqrt{1.30 \times 10^{-14} \times 3600}=0.137 \mu \mathrm{~m}$

$$
a_{P}=2 \sqrt{1.57 \times 10^{-14} \times 3600}=0.151 \mu \mathrm{~m}
$$

(This is a measure of the depth of doping.)

Consequence:

Diffusion is enhanced
at high dopant concentrations, giving sharper diffusion profile

Graph removed for copyright reasons.

September 21, 2005

Different behavior of B and Sb under oxidation suggests a different mechanism may dominate in these two dopants...

Effect of surface oxidation on diffusion in $\mathbf{S i}$

Because B and P diffuse mainly by an interstitial process;
their diffusion is enhanced by oxidation.
But Sb is large and diffuses only by vacancies.
Si interstitials created by oxidation,
recombine and reduce concentration of vacancies suppressing diffusion of Sb atoms.

(Si) (Sii) (Si)
3.155J/6.152J

September 21, 2005

Diffusion process is

 different for different species.Figure removed for copyright reasons.
Please see: Figure 7-15 in Plummer et al., 2000.

Review: Doping and diffiusion, small dose

$$
\frac{d C(z, t)}{d t}=\frac{d}{d z}\left(D \frac{d C}{d z}\right) \quad \text { Plus I.C. and B.C.s }
$$

Review: Doping and diffusion, large dose

Diffusion preceded by " pre-deposition" to deliver a large amount of impurity.
If pre-dep is inexhaustible or equivalently, if $a \sim \sqrt{D t}$ is small, then

1) I.C. $\quad C(z, 0)=0 \quad z>0$
2) B.C. $\quad C(\infty, t)=0$
3) B.C. $C(0, t)=C_{0}$

$$
C(z, t)=C_{0} e r f\left[\frac{z\rceil}{a}\right\rfloor \quad a=2 \sqrt{D t}
$$

Dose $\equiv Q=\int_{0} C(z, t) d z=\frac{2 \sqrt{D t}}{\sqrt{\pi}} C_{0}=\frac{a}{\sqrt{\pi}} C_{0}$
C_{0} limited by solid solubility

Junctions between different doped regions

Diffuse B at high concentration, into n-type $\underline{\operatorname{Si}}$, (uniformly doped, N_{D}, with P).
Want to know depth of $p-n$ junction $\left(N_{\mathrm{A}}=N_{\mathrm{D}}\right)$
Consider limitless dopant source (i.e. erfc) boron phosphorus

Internal \boldsymbol{E} fields alter Fick's Law D is not a constant, but depends on $c(x)$

Figure removed for copyright reasons.
Please see: Figure 7-26 in Plummer et al., 2000.

Exercise

n-type $\mathrm{Si}, N_{\mathrm{D}}=10^{16} \mathrm{~cm}^{-3}$ is doped with boron
from a const source with $C_{0}($ boron $)=10^{18} \mathrm{~cm}^{-3}$

Let $\operatorname{erfc}^{-1}\left[10^{-2}\right]=x, \operatorname{erfc}[x]=0.01=1-\operatorname{erf}[x], \quad \operatorname{erf}[x]=0.99$
From appendix, $x=1.82=z /\left[2(D t)^{1 / 2}\right]$
$D($ boron $)=0.037 \exp \left\lfloor-\frac{3.46}{k T}\right\rfloor \xrightarrow{1273 \mathrm{~K}} 7.6 \times 10^{-16} \mathrm{~cm}^{2} / \mathrm{s}$
$a=2 \sqrt{D t}=3.31 \times 10^{-6} \mathrm{~cm}=0.033 \mu \mathrm{~m} \quad z_{\text {jct }}=0.033 \times 1.82=0.06 \mu \mathrm{~m}$

September 21, 2005

$$
z_{\mathrm{jct}}=0.033 \times 1.82=0.06 \mu \mathrm{~m}
$$

From $z_{\mathrm{jct}}(t)$ and $z_{\mathrm{jct}}(0)=0$, you can calculate junction depth at different time:

$$
z_{j c t}^{\sim}
$$

Question: Now constant source is removed
and this dose, $C(z, 1 \mathrm{hr})$, is " driven in"farther for 1 hr at $1100^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\text { Now where is junction? } \quad Q=\int C(z, 1 h r) d z=\frac{a C_{0}}{\sqrt{\pi}}=1.87 \times 10^{12} \mathrm{~cm}^{-2} \\
\mathrm{D} \text { (boron) } \xrightarrow{1373 \mathrm{~K}} 7.57 \times 10^{-15} \mathrm{~cm}^{2} / \mathrm{s} \quad \sqrt{D t}=5.22 \times 10^{-6} \mathrm{~cm} \\
z_{\mathrm{jct}}=a \sqrt{\ln \left(\frac{Q}{N_{D} \sqrt{\pi D t}}\right)}=1.8 \times 10^{-5} \mathrm{~cm}=0.18 \mu \mathrm{~m}
\end{gathered}
$$

These \Rightarrow average n if done from surface.
These are most useful if done on beveled wafer:

3.155J/6.152J

September 21, 2005

Hall effect: electrical transport in magnetic field.

$\left.\begin{array}{l}F=q\langle\nu\rangle \times B \\ J=n q\langle\nu\rangle\end{array}\right\} \underbrace{\begin{array}{l}\frac{F}{q}=E_{H}=\frac{J}{n q} B \quad E_{H}=R_{H}(J \times B)\end{array}, ~}$
$\begin{aligned} & \text { Hall coefficient }=>\text { charge sign } \\ & \text { and concentration }\end{aligned} R_{H}=\frac{1}{n q}$
R_{H} is slope of V vs B data

Again an average measurement

[^1]38

[^0]: 3.155J/6.152J

 September 21, 2005

[^1]: 3.155J/6.152J

 September 21, 2005

