3.155J/6.152J Lecture 7: MEMS Lab Overview

Prof. Martin A. Schmidt Massachusetts Institute of Technology 10/3/2005

Outline

- MEMS Device and Technology Overview
- Anisotropic Etching
- Description of the Process and Testing
- Silicon Nitride as a Mechanical Material
- References
 - Senturia, Microsystems Design, Kluwer

MEMS Manufacturing Technologies

- Bulk Micromachining
 - DRIE-Based
 - Wet Processes
- Surface Micromachining
- Wafer Bonding
 - Front end e.g. Fusion Bonding
 - Back end e.g. Anodic Bonding
- Plastic Processes
 - Molding
 - Embossing
- Others
 - High Aspect Ratio Metals (LIGA)

Fall 2005 - M.A. Schmidt

Please see: Figures can be found in slide 10 of Tang, W. "MEMS Programs at DARPA." Presentation, DARPA, http://www.darpa.mil/mto/mems/presentations/memsatdarpa3.pdf

W. Tang - DARPA

Fall 2005 – M.A. Schmidt

Deep Etch Micromachining

Figures removed for copyright reasons.

Fall 2005 – M.A. Schmidt

http://www.cyberkineticsinc.com/content/index.jsp

Fall 2005 – M.A. Schmidt

Bulk Micromachining: Wet Etching

Figures removed for copyright reasons.

Please see: Figures can be found in slide 9 of Tang, W. "MEMS Programs at DARPA." Presentation, DARPA, http://www.darpa.mil/mto/mems/presentations/memsatdarpa3.pdf

W. Tang - DARPA

Fall 2005 – M.A. Schmidt

Pressure Sensors

See http://www.emkayproducts.com/html/sil_mic.html

Figure removed for copyright reasons.

NovaSensor

Fall 2005 – M.A. Schmidt

Ink Jet Nozzles and Heater Chips

- In development since 1973
- Today: 1.5 million produced every day
- HP and Lexmark use **Si heater chips**
 - laser-cut **polymer** nozzles
- Canon uses Si MEMS nozzles
 - "edge shooters" with bonded Si wafers

Figure removed for copyright reasons.

Figure removed for copyright reasons.

Please see: Figure found in J.T. Santini, Jr., M.J. Cima, and R. Langer. "A controlled release microchip." *Nature* 397 (Jan 28, 1999): 335-338.

Surface Micromachining

Figures removed for copyright reasons.

Please see: Figures can be found in slide 11 of Tang, W. "MEMS Programs at DARPA." Presentation, DARPA, http://www.darpa.mil/mto/mems/presentations/memsatdarpa3.pdf

W. Tang - DARPA

Fall 2005 – M.A. Schmidt

Polysilicon Surface Micromachining

Figures removed for copyright reasons.

Copyright Analog Devices, Inc.

Fall 2005 – M.A. Schmidt

ADXL 202 Brings Robots to Life

Photo of toy robot dogs removed for copyright reasons.

Courtesy of Robert Sulouff, Analog Devices. Used with permission Copyright Analog Devices, Inc.

Fall 2005 – M.A. Schmidt

Please see: Figure found in Reference: J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, and M. Weinberg, "A Micromachined comb-drive tuning fork rate gyroscope". *Proc. IEEE Micro Electro Mech. Systems* (1993): 143.

Dynamic Silicon

Micromachined Accelerometers and Gyros

Analog Devices Gyro Gyro Chip Single Chip Rate Sensor

5V Operation Std Atmosphere 150 deg per second Self-Test 0.03 deg/sec/sqrt hz Compensated 5%

Courtesy of Robert Sulouff, Analog Devices, Used with permission Copyright Analog Devices, Inc.

R. Sulouff

3.155J/6.152J - Lecture 7 - Slide 17

Fall 2005 – M.A. Schmidt

Please see: Figure 19 in Hornbeck, L. "Digital Light Processing: A New MEMS-Based Display Technology." White Paper, Texas Instruments.

TI Micro-Mirror Display : > 1M moving parts

Fall 2005 – M.A. Schmidt

Please see: Figure 19 in Hornbeck, L. "Digital Light Processing: A New MEMS-Based Display Technology." White Paper, Texas Instruments

Surface Micromachined Gears

Figures removed for copyright reasons.

Please see: Figures 3 and 8 in Mehregany, M., K. Gabriel, and W. Trimmer. "Integrated Fabrication of Polysilicon Mechanisms." *IEEE Transactions on Electron Devices* 35, no. 6 (1988): 719-723.

M.Mehregany – Bell Labs

Fall 2005 – M.A. Schmidt

K. Pister – UC Berkeley

Fall 2005 – M.A. Schmidt

Sandia MEMS

All images courtesy of Sandia National Laboratories, SUMMiT™ Technologies, www.mems.sandia.gov

Fall 2005 – M.A. Schmidt

Sandia Gears

All images courtesy of Sandia National Laboratories, SUMMiT[™] Technologies, www.mems.sandia.gov

Fall 2005 – M.A. Schmidt

Sandia Mirrors

All images courtesy of Sandia National Laboratories, SUMMiT™ Technologies, www.mems.sandia.gov

Fall 2005 – M.A. Schmidt

Wafer Bonding

NovaSensor

Fall 2005 – M.A. Schmidt

MEMS Applications

- Mechanical Sensors
 - Pressure, Acceleration, Flow (Mature)
 - Opportunities in wireless systems (µAmps, Smart Dust)
 - Acoustic
- Optical
 - Mirror Arrays
 - Modulators, Filters, Tunable Lasers
- Bio/Chem
 - Medical Instruments
 - Lab on a Chip (Chemical Sensors)
 - DNA/Protein Filters
 - Array-based Assays
- RF
 - Mechanical Filters
- Power
 - Energy Scavenging
 - Fuel Burning

Fall 2005 – M.A. Schmidt

The family of planes AFEG (1,0,0), ABC (1,1,1) and ABDF (1,1,0)

Fall 2005 – M.A. Schmidt

Fall 2005 – M.A. Schmidt

Fall 2005 – M.A. Schmidt

3.155J/6.152J - Lecture 7 - Slide 32

Figures removed due to copyright restrictions.

Images found in Mehregany, M. "Application of Micromachined Structures to the Study of Mechanical Properties and Adhesion of Thin Films." *Master of Science Thesis*, Massachusetts Institute of Technology, May 23, 1986.

Fall 2005 – M.A. Schmidt

Figure removed due to copyright restrictions.

Figure found in H. Seidel, L. Csepregi, A.Hueberger, and H. Baungärtel. *The Journal of the Electrochemical Society* 137 (1990): 3612-3626.

Figures removed due to copyright restrictions.

Images found in Mehregany, M. "Application of Micromachined Structures to the Study of Mechanical Properties and Adhesion of Thin Films." *Master of Science Thesis*, Massachusetts Institute of Technology, May 23, 1986.

Figure found in H. Seidel, L. Csepregi, A.Hueberger, and H. Baungärtel. *The Journal of the Electrochemical Society* 137 (1990): 3612-3626.

Fall 2005 – M.A. Schmidt

Orientation Dependence

Figure removed for copyright reasons.

Figure found in H. Seidel, L. Csepregi, A.Hueberger, and H. Baungärtel. *The Journal of the Electrochemical Society* 137 (1990): 3612-3626.

Fall 2005 – M.A. Schmidt

 Si_3N_4 etch rate in most anisotropic etchants is virtually zero.

Figure removed for copyright reasons.

Figure found in H. Seidel, L. Csepregi, A.Hueberger, and H. Baungärtel. *The Journal of the Electrochemical Society* 137 (1990): 3612-3626.

Fall 2005 – M.A. Schmidt

Si/SiO₂ Etch Rate Ratio

Figure removed for copyright reasons.

Figure found in H. Seidel, L. Csepregi, A.Hueberger, and H. Baungärtel. *The Journal of the Electrochemical Society* 137 (1990): 3612-3626.

The Process – Lab 1

Grow 1.0µm of Si-Rich Silicon Nitride (SiN_x)

- LPCVD Process (performed before lab)
- Characterize (UV1280)
 - Thickness
 - Refractive index

The Process – Lab 1

- Pattern Transfer
 - Deposit photoresist
 - Expose on contact aligner
 - Plasma etch using SF₆ chemistry
 - Strip resist

■ 20%, 80C

Fall 2005 – M.A. Schmidt

Figure found in H. Seidel, L. Csepregi, A.Hueberger, and H. Baungärtel. *The Journal of the Electrochemical Society* 137 (1990): 3612-3626.

Fall 2005 – M.A. Schmidt

The Mask

Fall 2005 – M.A. Schmidt

The Process – Lab 3

- Break the wafer into die
- Mount the die on a metal plate
- Test using the Hysitron Nanoindenter

Fall 2005 – M.A. Schmidt

Hysitron Nanoindenter

Load

- Resolution <1nN</p>
- Noise Floor: 100nM
- Drift: 50 nN/min
- Displacement
 - Resolution: 0.0002nm
 - Noise Floor: 0.2nm
 - Drift: <0.05 nm/sec

Figure removed for copyright reasons.

Figure found at www.hysitron.com

Silicon-Rich Silicon Nitride

Silicon nitride single-layer x-ray mask

Misao Sekimoto, Hideo Yoshihara, and Takashi Ohkubo

Musashino Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Musashino-shi, Tokyo, 180 Japan

(Received 3 June 1982; accepted 9 July 1982)

In LP-CVD process, preparation of silicon nitride film with small tensile stress and low refractive index was investigated as a function of deposition temperature and reactant gas ratio (SiH₂Cl₂/NH₃). The small stress film with low refractive index can be prepared easily by high temperature deposition. Applying the film to an x-ray mask membrane, a new silicon nitride single-layer x-ray mask with a large area window (such as 50 mm in diameter) and high transparency to visible light is realized. Using this mask, a submicron resist pattern (0.5 μ m line and space) can be replicated easily by Si–K x-ray exposure system.

PACS numbers: 81.15.Gh, 78.65.Jd, 85.40.Ci

Sekimoto, Journal of Vacuum Science and Technology, 1982

Figure found in Sekimoto, S., H. Yoshihara, and T. Ohkubo. "Silicon Nitride Single Layer X-Ray Mask." *Journal of Vacuum Science and Technology* 21, no. 4 (Nov./Dec. 1982): 1017-1021.

$$3SiH_2CI_2 + 4NH_3 \rightarrow Si_3N_4 + 6HCI + 6H_2$$

Increase ratio of SiH₂Cl₂ to NH₃ Film becomes 'Silicon-Rich' (SiN_x)

Fall 2005 – M.A. Schmidt

Figure found in Sekimoto, S., H. Yoshihara, and T. Ohkubo. "Silicon Nitride Single Layer X-Ray Mask." *Journal of Vacuum Science and Technology* 21, no. 4 (Nov./Dec. 1982): 1017-1021.

Fall 2005 – M.A. Schmidt

Figure found in Sekimoto, S., H. Yoshihara, and T. Ohkubo. "Silicon Nitride Single Layer X-Ray Mask." *Journal of Vacuum Science and Technology* 21, no. 4 (Nov./Dec. 1982): 1017-1021.

Fall 2005 – M.A. Schmidt

Other Information

Figure removed for copyright reasons.

Figure found in Sekimoto, S., H. Yoshihara, and T. Ohkubo. "Silicon Nitride Single Layer X-Ray Mask." *Journal of Vacuum Science and Technology* 21, no. 4 (Nov./Dec. 1982): 1017-1021.