Solution for homework 3

Exercise 5.2

a) We have a linear-quadratic problem with imperfect state information. Thus the optimal control law is:

$$
\mu_{k}^{*}\left(I_{k}\right)=L_{k} E\left\{x_{k} \mid I_{k}\right\}
$$

where L_{k} is a gain matrix given by the Riccatti formula. Since the system and cost matrices $A_{k}, B_{k}, Q_{k}, R_{k}$ are all equal to 1 :

$$
\begin{aligned}
L_{k} & =-\left(R_{k}+B_{k}^{\prime} K_{k+1} B_{k}\right)^{-1} B_{k}^{\prime} K_{k+1} A_{k} \\
& =\frac{-K_{k+1}}{1+K_{k+1}}
\end{aligned}
$$

and with $K_{N}=1$,

$$
\begin{aligned}
K_{k} & =A_{k}^{\prime}\left[K_{k+1}-K_{k+1} B_{k}\left(R_{k}+B_{k}{ }^{\prime} K_{k+1} B_{k}\right)^{-1} B_{k}^{\prime} K_{k+1}\right] A_{k}+Q_{k} \\
& =\frac{1+2 K_{k+1}}{1+K_{k+1}}
\end{aligned}
$$

For this particular problem, $E\left\{x_{k} \mid I_{k}\right\}$ can be calculated easily and is equal to the exact value of the state x_{k}. To see this note that given x_{k} and I_{k+1} :

$$
z_{k+1}=x_{k+1}+v_{k+1}=x_{k}+u_{k}+w_{k}+v_{k+1}
$$

So

$$
z_{k+1}-u_{k}-x_{k}=w_{k}+v_{k+1}
$$

Now $w_{k}+v_{k+1}$ can take on four possible values: $\pm 1 \pm \frac{1}{4}$. If at time $k+1$ the known value $z_{k+1}-u_{k}-x_{k}$ comes out to be $1 \pm \frac{1}{4}$ then we know that $w_{k}=1$ and $x_{k+1}=x_{k}+u_{k}+1$ becomes known. If $z_{k+1}-u_{k}-x_{k}$ comes out to be $-1 \pm \frac{1}{4}$ then we know that $w_{k}=-1$ and $x_{k+1}=x_{k}+u_{k}-1$ becomes known. Also note that, given z_{0}, we can compute the exact value of x_{0}. Thus the estimator for $E\left\{x_{k} \mid I_{k}\right\}$ is given by:

$$
\begin{gathered}
E\left\{x_{0} \mid I_{0}\right\}= \begin{cases}2, & \text { if } z_{0}=2 \pm \frac{1}{4} \\
-2, & \text { if } z_{0}=-2 \pm \frac{1}{4}\end{cases} \\
E\left\{x_{k+1} \mid I_{k+1}\right\}=\left\{\begin{array}{ll}
E\left\{x_{k} \mid I_{k}\right\}+u_{k}+1, & \text { if } z_{k+1}-E\left\{x_{k} \mid I_{k}\right\}-u_{k}=1 \pm \frac{1}{4} \\
E\left\{x_{k} \mid I_{k}\right\}+u_{k}-1, & \text { if } z_{k+1}-E\left\{x_{k} \mid I_{k}\right\}-u_{k}=-1 \pm \frac{1}{4}
\end{array} .\right.
\end{gathered}
$$

An alternative approach to compute $E\left\{x_{k} \mid I_{k}\right\}$ is based on the fact that:

$$
x_{k}-\sum_{i=0}^{k-1} u_{i}=x_{0}+\sum_{i=0}^{k-1} w_{i} \quad \in \text { Integers }
$$

since x_{0} and w_{k} take on integer values. So we have:

$$
z_{k}-\sum_{i=0}^{k-1} u_{i}=x_{k}-\sum_{i=0}^{k-1} u_{i}+v_{k} \quad \in \text { Integer } \pm \frac{1}{4}
$$

Thus the estimator will be the true value of x_{k} which is the nearest integer to $z_{k}-\sum u_{i}$ plus $\sum u_{i}$.

Exercise 5.7

a) We have

$$
\begin{aligned}
p_{k+1}^{j} & =P\left(x_{k+1}=j \mid z_{0}, \ldots, z_{k+1}, u_{0}, \ldots, u_{k}\right) \\
& =P\left(x_{k+1}=j \mid I_{k+1}\right) \\
& =\frac{P\left(x_{k+1}=j, z_{k+1} \mid I_{k}, u_{k}\right)}{P\left(z_{k+1} \mid I_{k}, u_{k}\right)} \\
& =\frac{\sum_{i=1}^{n} P\left(x_{k}=i\right) P\left(x_{k+1}=j \mid x_{k}=i, u_{k}\right) P\left(z_{k+1} \mid u_{k}, x_{k+1}=j\right)}{\sum_{s=1}^{n} \sum_{i=1}^{n} P\left(x_{k}=i\right) P\left(x_{k+1}=s \mid x_{k}=i, u_{k}\right) P\left(z_{k+1} \mid u_{k}, x_{k+1}=s\right)} \\
& =\frac{\sum_{i=1}^{n} p_{k}^{i} p_{i j}\left(u_{k}\right) r_{j}\left(u_{k}, z_{k+1}\right)}{\sum_{s=1}^{n} \sum_{i=1}^{n} p_{k}^{i} p_{i s}\left(u_{k}\right) r_{s}\left(u_{k}, z_{k+1}\right)} .
\end{aligned}
$$

Rewriting p_{k+1}^{j} in vector form, we have

$$
p_{k+1}^{j}=\frac{r_{j}\left(u_{k}, z_{k+1}\right)\left[P\left(u_{k}\right)^{\prime} P_{k}\right]_{j}}{\sum_{s=1}^{n} r_{s}\left(u_{k}, z_{k+1}\right)\left[P\left(u_{k}\right)^{\prime} P_{k}\right]_{s}}, \quad j=1, \ldots, n .
$$

Therefore,

$$
P_{k+1}=\frac{\left[r\left(u_{k}, z_{k+1}\right)\right] *\left[P\left(u_{k}\right)^{\prime} P_{k}\right]}{r\left(u_{k}, z_{k+1}\right)^{\prime} P\left(u_{k}\right)^{\prime} P_{k}} .
$$

b) The DP algorithm for this system is:

$$
\begin{gathered}
\bar{J}_{N-1}\left(P_{N-1}\right)=\min _{u}\left\{\sum_{i=1}^{n} p_{N-1}^{i} \sum_{j=1}^{n} p_{i j}(u) g_{N-1}(i, u, j)\right\} \\
=\min _{u}\left\{\sum_{i=1}^{n} p_{N-1}^{i}\left[G_{N-1}(u)\right]_{i}\right\} \\
=\min _{u}\left\{P_{N-1}^{\prime} G_{N-1}(u)\right\} \\
\bar{J}_{k}\left(P_{k}\right)=\min _{u}\left\{\sum_{i=1}^{n} p_{k}^{i} \sum_{j=1}^{n} p_{i j}(u) g_{k}(i, u, j)+\sum_{i=1}^{n} p_{k}^{i} \sum_{j=1}^{n} p_{i j}(u) \sum_{\theta=1}^{q} r_{j}(u, \theta) \bar{J}_{k+1}\left(P_{k+1} \mid P_{k}, u, \theta\right)\right\} \\
=\min _{u}\left\{P_{k}^{\prime} G_{k}(u)+\sum_{\theta=1}^{q} r(u, \theta)^{\prime} P(u)^{\prime} P_{k} \bar{J}_{k+1}\left[\frac{[r(u, \theta)] *\left[P(u)^{\prime} P_{k}\right]}{r(u, \theta)^{\prime} P(u)^{\prime} P_{k}}\right]\right\} .
\end{gathered}
$$

c) For $k=N-1$,

$$
\begin{aligned}
\bar{J}_{N-1}\left(\lambda P_{N-1}^{\prime}\right) & =\min _{u}\left\{\lambda P_{N-1}^{\prime} G_{N-1}(u)\right\} \\
& =\min _{u}\left\{\sum_{i=1}^{n} \lambda p_{N-1}^{i}\left[G_{N-1}(u)\right]_{i}\right\} \\
& =\min _{u}\left\{\lambda \sum_{i=1}^{n} p_{N-1}^{i}\left[G_{N-1}(u)\right]_{i}\right\} \\
& =\lambda \min _{u}\left\{\sum_{i=1}^{n} p_{N-1}^{i}\left[G_{N-1}(u)\right]_{i}\right\} \\
& =\lambda \min _{u}\left\{\sum_{i=1}^{n} p_{N-1}^{i}\left[G_{N-1}(u)\right]_{i}\right\} \\
& =\lambda \bar{J}_{N-1}\left(P_{N-1}\right) .
\end{aligned}
$$

Now assume $\bar{J}_{k}\left(\lambda P_{k}\right)=\lambda \bar{J}_{k}\left(P_{k}\right)$. Then,

$$
\begin{aligned}
\bar{J}_{k-1}\left(\lambda P_{k-1}^{\prime}\right) & =\min _{u}\left\{\lambda P_{k-1}^{\prime} G_{k-1}(u)+\sum_{\theta=1}^{q} r(u, \theta)^{\prime} P(u)^{\prime} \lambda P_{k-1} \bar{J}_{k}\left(P_{k} \mid P_{k-1}, u, \theta\right)\right\} \\
& =\min _{u}\left\{\lambda P_{k-1}^{\prime} G_{k-1}(u)+\lambda \sum_{\theta=1}^{q} r(u, \theta)^{\prime} P(u)^{\prime} P_{k-1} \bar{J}_{k}\left(P_{k} \mid P_{k-1}, u, \theta\right)\right\} \\
& =\lambda \min _{u}\left\{P_{k-1}^{\prime} G_{k-1}(u)+\sum_{\theta=1}^{q} r(u, \theta)^{\prime} P(u)^{\prime} P_{k-1} \bar{J}_{k}\left(P_{k} \mid P_{k-1}, u, \theta\right)\right\} \\
& =\lambda \bar{J}_{k-1}\left(P_{k-1}\right)
\end{aligned}
$$

For any $u, r(u, \theta)^{\prime} P(u)^{\prime} P_{k}$ is a scalar. Therefore, letting $\lambda=r(u, \theta)^{\prime} P(u)^{\prime} P_{k}$, we have

$$
\begin{aligned}
\bar{J}_{k}\left(P_{k}\right) & =\min _{u}\left\{P_{k}^{\prime} G_{k}(u)+\sum_{\theta=1}^{q} r(u, \theta)^{\prime} P(u)^{\prime} P_{k} \bar{J}_{k+1}\left[\frac{[r(u, \theta)] *\left[P(u)^{\prime} P_{k}\right]}{r(u, \theta)^{\prime} P(u)^{\prime} P_{k}}\right]\right\} \\
& =\min _{u}\left[P_{k}^{\prime} G_{k}(u)+\sum_{\theta=1}^{q} \bar{J}_{k+1}\left([r(u, \theta)] *\left[P(u)^{\prime} P_{k}\right]\right)\right]
\end{aligned}
$$

d) For $k=N-1$, we have $\bar{J}_{N-1}\left(P_{N-1}\right)=\min _{u}\left[P_{N-1}^{\prime} G_{N-1}(u)\right]$, and so $\bar{J}_{N-1}\left(P_{N-1}\right)$ has the desired form

$$
\bar{J}_{N-1}\left(P_{N-1}\right)=\min \left[P_{N-1}^{\prime} \alpha_{N-1}^{1}, \ldots, P_{N-1}^{\prime} \alpha_{N-1}^{m}\right]
$$

where $\alpha_{N-1}^{j}=G_{N-1}\left(u^{j}\right)$ and u^{j} is the j th element of the control constraint set.
Assume that

$$
\bar{J}_{k+1}\left(P_{k+1}\right)=\min \left[P_{k+1}^{\prime} \alpha_{k+1}^{1}, \ldots, P_{k+1}^{\prime} \alpha_{k+1}^{m_{k+1}}\right]
$$

Then, using the expression from part (c) for $\bar{J}_{k}\left(P_{k}\right)$,

$$
\begin{aligned}
\bar{J}_{k}\left(P_{k}\right) & =\min _{u}\left[P_{k}^{\prime} G_{k}(u)+\sum_{\theta=1}^{q} \bar{J}_{k+1}\left([r(u, \theta)] *\left[P(u)^{\prime} P_{k}\right]\right)\right] \\
& =\min _{u}\left[P_{k}^{\prime} G_{k}(u)+\sum_{\theta=1}^{q} \min _{m=1, \ldots, m_{k+1}}\left[\left\{[r(u, \theta)] *\left[P(u)^{\prime} P_{k}\right]\right\}^{\prime} \alpha_{k+1}^{m}\right]\right] \\
& =\min _{u}\left[P_{k}^{\prime} G_{k}(u)+\sum_{\theta=1}^{q} \min _{m=1, \ldots, m_{k+1}}\left[P_{k}^{\prime} P(u) r(u, \theta)^{\prime} \alpha_{k+1}^{m}\right]\right] \\
& =\min _{u}\left[P_{k}^{\prime}\left\{G_{k}(u)+\sum_{\theta=1}^{q} \min _{m=1, \ldots, m_{k+1}}\left[P(u) r(u, \theta)^{\prime} \alpha_{k+1}^{m}\right]\right\}\right] \\
& =\min \left[P_{k}^{\prime} \alpha_{k}^{1}, \ldots, P_{k}^{\prime} \alpha_{k}^{m_{k}}\right]
\end{aligned}
$$

where $\alpha_{k}^{1}, \ldots, \alpha_{k}^{m_{k}}$ are all possible vectors of the form

$$
G_{k}(u)+\sum_{\theta=1}^{q} P(u) r(u, \theta)^{\prime} \alpha_{k+1}^{m_{u, \theta}}
$$

as u ranges over the finite set of controls, θ ranges over the set of observation vector indexes $\{1, \ldots, q\}$, and $m_{u, \theta}$ ranges over the set of indexes $\left\{1, \ldots, m_{k+1}\right\}$. The induction is thus complete.

For a quick way to understand the preceding proof, based on polyhedral concavity notions, note that the conclusion is equivalent to asserting that $\bar{J}_{k}\left(P_{k}\right)$ is a positively homogeneous, concave polyhedral function. The preceding induction argument amounts to showing that the DP formula of part (c) preserves the positively homogeneous, concave polyhedral property of $\bar{J}_{k+1}\left(P_{k+1}\right)$. This is indeed evident from the formula, since taking minima and nonnegative weighted sums of positively homogeneous, concave polyhedral functions results in a positively homogeneous, concave polyhedral function.

Exercise 5.14

a) The state is $\left(x_{k}, d_{k}\right)$, where x_{k} is the current offer under consideration and d_{k} takes the value 1 or 2 depending on whether the common distribution of the system disturbance, w_{k}, is F_{1} or F_{2}. The variable d_{k} stays constant (i.e., satisfies $d_{k+1}=d_{k}$ for all k), but is not observed perfectly. Instead, the sample offer values w_{0}, w_{1}, \ldots are observed $\left(w_{k}=x_{k+1}\right)$, and provide information regarding the value of d_{k}. In particular, given the a priori probability q and the demand values w_{0}, \ldots, w_{k-1}, we can calculate the conditional probability that w_{k} will be generated according to F_{1}.
b) A suitable sufficient statistic is $\left(x_{k}, q_{k}\right)$, where

$$
q_{k}=P\left(d_{k}=1 \mid w_{0}, \ldots, w_{k-1}\right)
$$

The conditional probability q_{k} evolves according to

$$
q_{k+1}=\frac{q_{k} F_{1}\left(w_{k}\right)}{q_{k} F_{1}\left(w_{k}\right)+\left(1-q_{k}\right) F_{2}\left(w_{k}\right)}, \quad q_{0}=q
$$

where $F_{i}\left(w_{k}\right)$ denotes probability under the distribution F_{i}, and assuming that w_{k} can take a finite number of values under the distributions F_{1} and F_{2}. Let $w^{1}, w^{2}, \ldots, w^{n}$ be the possible values w_{k} can take under either distribution.
We have the following DP algorithm:

$$
\begin{aligned}
J_{N}\left(x_{N}, q_{N}\right) & =x_{N} \\
J_{k}\left(x_{k}, q_{k}\right) & =\max \left[(1+r)^{N-k} x_{k}, E\left\{J_{k+1}\left(x_{k+1}, q_{k+1}\right)\right\}\right] \\
& =\max \left[(1+r)^{N-k} x_{k},\right. \\
& \left.\sum_{i=1}^{n}\left(q_{k} F_{1}\left(w^{i}\right)+\left(1-q_{k}\right) F_{2}\left(w^{i}\right)\right) J_{k+1}\left(w^{i}, \frac{q_{k} F_{1}\left(w^{i}\right)}{q_{k} F_{1}\left(w^{i}\right)+\left(1-q_{k}\right) F_{2}\left(w^{i}\right)}\right)\right]
\end{aligned}
$$

As in the text, we renormalize the cost-to go so that each stage has the same cost function for stopping. Let

$$
V_{k}\left(x_{k}, q_{k}\right)=\frac{J_{k}\left(x_{k}, q_{k}\right)}{(1+r)^{N-k}}
$$

Then we have

$$
\begin{gathered}
V_{N}\left(x_{N}, q_{N}\right)=x_{N} \\
V_{k}\left(x_{k}, q_{k}\right)=\max \left[x_{k}, \alpha_{k}\left(q_{k}\right)\right]
\end{gathered}
$$

where

$$
\alpha_{k}\left(q_{k}\right)=(1+r)^{-1} \sum_{i=1}^{n}\left(q_{k} F_{1}\left(w^{i}\right)+\left(1-q_{k}\right) F_{2}\left(w^{i}\right)\right) V_{k+1}\left(w^{i}, \frac{q_{k} F_{1}\left(w^{i}\right)}{q_{k} F_{1}\left(w^{i}\right)+\left(1-q_{k}\right) F_{2}\left(w^{i}\right)}\right),
$$

which is independent of x_{k}. Each stopping set therefore has a threshold format, $T_{k}=\left\{x \mid x \geq \alpha_{k}\left(q_{k}\right)\right\}$, where the threshold depends on q_{k}.

Because $V_{N-1}(x, q) \geq V_{N}(x, q)$ for all x, q, we have by the monotonicity property for stationary problems that $V_{k}(x, q) \geq V_{k+1}(x, q)$ for all x, q, k, which implies $\alpha_{k}(q) \geq \alpha_{k+1}(q)$ for all q, k.

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

