
Exercise 5.2

a) We have a linear-quadratic problem with imperfect state information. Thus the optimal control law is:

µ∗k(Ik) = Lk E{xk | Ik},

where Lk is a gain matrix given by the Riccatti formula. Since the system and cost matrices
Ak, Bk, Qk, Rk are all equal to 1:

Lk = −(Rk + Bk
′Kk+1Bk)−1Bk

′Kk+1Ak

=
−Kk+1

1 + Kk+1

and with KN = 1,

Kk = Ak
′[Kk+1 −Kk+1Bk(Rk + Bk

′Kk+1Bk)−1Bk
′Kk+1]Ak + Qk

1 + 2K
= k+1

.
1 + Kk+1

For this particular problem, E{xk | Ik} can be calculated easily and is equal to the exact value of the state
xk. To see this note that given xk and Ik+1:

zk+1 = xk+1 + vk+1 = xk + uk + wk + vk+1.

So
zk+1 − uk − xk = wk + vk+1.

Now wk + v +1 can take on four possible values: ±1± 1
k k4 . If at time + 1 the known value zk+1− uk − xk

comes out to be 1± 1
4 then we know that wk = 1 and xk+1 = xk +uk +1 becomes known. If zk+1−uk−xk

comes out to be −1± 1 then we know that wk = −1 and xk+1 = xk + uk4 − 1 becomes known. Also note
that, given z0, we can compute the exact value of x0. Thus the estimator for E{xk | Ik} is given by:

z
E{x0 | I0}

{
2, if 1

0 = 2= ± 4
−2, if z0 = −2± 1

4

{
E{xk | Ik}+ uk + 1, if zk+1 − E{xk | Ik} − u 1

k = 1
E{xk+1 | Ik+1} = ± 4

E{xk | Ik}+ uk − 1, if zk+1 − E{xk | Ik} − uk = −1± 1 .
4

An alternative approach to compute E{xk | Ik} is based on the fact that:

k−1 k−1

xk −
∑

ui = x0 +
i=0

∑
wi

i=0

∈ Integers

since x0 and wk take on integer values. So we have:

k−1 k−1 1
zk −

∑
ui = xk

=0

−
∑

ui + vk

i =0

∈ Integer
i

± .
4

Thus the estimator will be the true value of xk which is the nearest integer to zk −
∑

ui plus
∑

ui.
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Exercise 5.7

a) We have
j
k+1 = P (xk+1 = j | z0, . . . , zk+1, u0, . . . , uk)

= P (xk+1 = j | Ik+1)
P (xk+1 = j, z

= k+1 | Ik, uk)
P (zk+1 | Ik, uk)

=
∑n

∑ i∑=1 P (xk = i)P (xk+1 = j | xk = i, uk)P (zk+1 j
n

| uk, xk+1 = )
n

s=1 i=1 P (xk = i) (∑ P xk+1 = s | xk = i, uk)P (zk+1 | uk, xk+1 = s)
n

= i=1 pi

∑ kpij(uk)rj(uk, zk+1)
n n
s=1

∑ .
i=1 pi

kpis(uk)rs(uk, zk+1)

p
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Rewriting jpk+1 in vector form, we have

j ∑ rj(uk, zk+1)[P (uk)′Pk]j
pk+1 = n , j = 1, . . . , n.

s rs=1 (uk, zk+1)[P (uk)′Pk]s

Therefore,
[r(u

= k, zk+1)] ∗ [P (uk)′Pk]
Pk+1 .

r(uk, zk+1)′P (uk)′Pk

b) The DP algorithm for this system is:

J̄N−1(PN−1) = min
u





∑n n

i

 pN 1 p u, j)− ij(u)gN−1(i,

{ i=1

∑

j=1



n

= min



u

∑
pi

N−1 GN−1(u)
i

{ i=1

P

]
}

= min ′

[

Nu −1GN−1(u)
}

J̄k(Pk) = min



∑n n

 pi pi ¯
k

∑ n n q

pij(u)gk(i, u, j) +
∑

ij jk

∑
p (u)

∑
r (u, θ)Jk+1(Pk+1 | Pk, u, θ)

u
i=1 j=1 i=1 j=1 θ=1




q
[r(u, θ)] [P (u)′P ]

= min Pk J̄′Gk(u) + r(u, θ)′P (u)′Pk k+1
∗ k



u

{ ∑

θ=1

[
r(u, θ)′P (u)′Pk

]}
.

c) For k = N − 1,

J̄N 1(λPN
′

1) = min
{
λPN

′ G− − u −1 N−1(u)
n

= min

}

u
{
∑

λpi
N−1

i=1

n

[
GN−1(u)

]
i
}

= min{λ
∑

pi
N 1[GN

u − −1(u)]i
i=1

}
n

= λ min pi
N 1[GN 1(u)]i

u

{∑
− −

i=1

}

= λ min
{∑n

pi
N 1[Gu − N−1(u)]i

i=1

= λJ̄N−1(PN

}

−1).

Now assume J̄k(λPk) = λJ̄k(Pk). Then,
q

J̄k 1(λPk
′

1) = min

{
λPk

′
1Gk 1(u) +

∑
r(u, θ)′P (u)′λPk 1J̄ ( P− u − − − k P− k

θ=1

| k−1, u, θ)

}

q

= min

{
λP G (u) + λ

∑
r(u, θ) P (u) P J̄k

′
−1 k

′−1
′

k P−1 k(Pk| k−1, u, θ)
u

θ=1

}

= λ min

{
q

Pk
′

1Gk 1(u) +
∑

r(u, θ)′P (u)′P ¯ , u,
u − − k−1Jk(Pk|Pk θ)−1

θ=1

}

= λJ̄k−1(Pk−1). Q.E.D.
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For any u, r(u, θ)′P (u)′Pk is a scalar. Therefore, letting λ = r(u, θ)′P (u)′Pk, we have

{ ∑q
[r(u, θ)] [P (u)

J̄
′P ]

k(Pk) = min Pk
′Gk(u) + r(u, θ) ¯′P (u)′PkJ +1

∗
u

[
k

k
r(u, θ)′P (u)

θ=1
′Pk

]}

= min

[
q

Pk
′Gk(u) +

∑
J̄k+1

(
[r(u, θ)] ′

θ=1

∗ [P (u) Pk]
u

)
]

.

d) For k = N − 1, we have J̄N 1(PN 1) = minu[PN
′

1GN 1(u)], and so J̄− − − − N−1(PN−1) has the desired form

J̄N−1(P 1 m
N−1) = min

[
PN
′
−1αN−1, . . . , PN

′
−1αN−1 ,

where jαN 1 = GN 1(uj) and uj is the jth element of the control constraint

]

set.− −

Assume that
J̄ (P ) = min

[
P ′ α1 , . . . , P ′ m

α k+1
k+1 k+1 k+1 k+1 k+1 k+1 .

Then, using the expression from part (c) for J̄k(Pk),

]

q

J̄k(Pk) = min

[
P ¯

k
′Gk(u) +

u

∑
Jk+1

θ=1

(
[r(u, θ)] ∗ [P (u)′Pk]

)
]

q

= min

[
Pk
′Gk(u) +

∑
min

[{
[r(u, θ)] ∗ [P (u)′Pk]

}′
αm

k+1u m=1,...,mk+1
θ=1

]]

q

= min

[
Pk
′Gk(u) +

∑
min

[
Pk
′P (u)r(u, θ)′αm

k+1u m=1,...,mk+1
θ=1

]
]

q

= min

[
Pk
′
{

Gk(u) +
u

∑
min P (u)r(u, θ)′αm

k+1m=1,...,mk+1

[ θ=1

P

[
}]

= min ′ 1
kα

]

k, . . . , P mk

k
′αk ,

where α1
k, . . . , αmk

k are all possible vectors of the form

]

q

Gk(u) +
∑

m
P (u)r(u, θ)′α u,θ

k+1 ,
θ=1

as u ranges over the finite set of controls, θ ranges over the set of observation vector indexes {1, . . . , q}, and
mu,θ ranges over the set of indexes {1, . . . , mk+1}. The induction is thus complete.

For a quick way to understand the preceding proof, based on polyhedral concavity notions, note that
the conclusion is equivalent to asserting that J̄k(Pk) is a positively homogeneous, concave polyhedral func-
tion. The preceding induction argument amounts to showing that the DP formula of part (c) preserves
the positively homogeneous, concave polyhedral property of J̄k+1(Pk+1). This is indeed evident from the
formula, since taking minima and nonnegative weighted sums of positively homogeneous, concave polyhedral
functions results in a positively homogeneous, concave polyhedral function.
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Exercise 5.14

a) The state is (xk, dk), where xk is the current offer under consideration and dk takes the value 1 or 2 depending
on whether the common distribution of the system disturbance, wk, is F1 or F2. The variable dk stays constant
(i.e., satisfies dk+1 = dk for all k), but is not observed perfectly. Instead, the sample offer values w0, w1, . . .
are observed (wk = xk+1), and provide information regarding the value of dk. In particular, given the a priori
probability q and the demand values w0, . . . , wk−1, we can calculate the conditional probability that wk will
be generated according to F1.

b) A suitable sufficient statistic is (xk, qk), where

qk = P (dk = 1 | w0, . . . , wk−1).

The conditional probability qk evolves according to

q
qk+1 = kF1(wk)

, q ,
qkF1(

0 = q
wk) + (1− qk)F2(wk)

where Fi(wk) denotes probability under the distribution Fi, and assuming that wk can take a finite number
of values under the distributions F1 and F2. Let w1, w2, . . . , wn be the possible values wk can take under
either distribution.
We have the following DP algorithm:

JN (xN , qN ) = xN

Jk(xk, q N
k) = max

[
(1 + r) −kxk, E

{
Jk+1(xk+1, qk+1)

}]

= max

[
(1 + r)N−kxk,

∑n
q i

q i i
kF1(wi) + (1 kF1(w )

qk)F2(w ) Jk+1 w ,
qkF1(wi) + (1 qk)F2(wi)

i=1

( − ) (
−

) ]

As in the text, we renormalize the cost-to go so that each stage has the same cost function for stopping. Let

J (x , q )
Vk(xk, qk) = k k k

.
(1 + r)N−k

Then we have
VN (xN , qN ) = xN ,

Vk(xk, qk) = max
[
xk, αk(qk)

]
,

where
n

q F (wi)
αk(qk) = (1 + r)− 11

∑(
F (wi) + (1− k

q q )F (wi
k 1 k 2 )

)
Vk+1

(
wi,

)
,

qkF1(wi) + (1 qk)F2(wi)
i=1

−

which is independent of xk. Each stopping set therefore has a threshold format, Tk = {x | x ≥ αk(qk)}, where
the threshold depends on qk.

Because VN 1(x, q) ≥ VN (x, q) for all x, q, we have by the monotonicity property for stationary problems−
that Vk(x, q) ≥ Vk+1(x, q) for all x, q, k, which implies αk(q) ≥ αk+1(q) for all q, k.
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