Solution for homework 3

Exercise 5.2

a) We have a linear-quadratic problem with imperfect state information. Thus the optimal control law is:

$$\mu_k^*(I_k) = L_k E\{x_k \,|\, I_k\},\$$

where L_k is a gain matrix given by the Riccatti formula. Since the system and cost matrices A_k, B_k, Q_k, R_k are all equal to 1:

$$L_k = -(R_k + B_k' K_{k+1} B_k)^{-1} B'_k K_{k+1} A_k$$
$$= \frac{-K_{k+1}}{1 + K_{k+1}}$$

and with $K_N = 1$,

$$K_k = A_k' [K_{k+1} - K_{k+1} B_k (R_k + B_k' K_{k+1} B_k)^{-1} B_k' K_{k+1}] A_k + Q_k$$

= $\frac{1 + 2K_{k+1}}{1 + K_{k+1}}$.

For this particular problem, $E\{x_k | I_k\}$ can be calculated easily and is equal to the exact value of the state x_k . To see this note that given x_k and I_{k+1} :

$$z_{k+1} = x_{k+1} + v_{k+1} = x_k + u_k + w_k + v_{k+1}.$$

 So

$$z_{k+1} - u_k - x_k = w_k + v_{k+1}$$

Now $w_k + v_{k+1}$ can take on four possible values: $\pm 1 \pm \frac{1}{4}$. If at time k + 1 the known value $z_{k+1} - u_k - x_k$ comes out to be $1 \pm \frac{1}{4}$ then we know that $w_k = 1$ and $x_{k+1} = x_k + u_k + 1$ becomes known. If $z_{k+1} - u_k - x_k$ comes out to be $-1 \pm \frac{1}{4}$ then we know that $w_k = -1$ and $x_{k+1} = x_k + u_k - 1$ becomes known. Also note that, given z_0 , we can compute the exact value of x_0 . Thus the estimator for $E\{x_k \mid I_k\}$ is given by:

$$E\{x_0 \mid I_0\} = \begin{cases} 2, & \text{if } z_0 = 2 \pm \frac{1}{4} \\ -2, & \text{if } z_0 = -2 \pm \frac{1}{4} \end{cases}$$
$$E\{x_{k+1} \mid I_{k+1}\} = \begin{cases} E\{x_k \mid I_k\} + u_k + 1, & \text{if } z_{k+1} - E\{x_k \mid I_k\} - u_k = 1 \pm \frac{1}{4} \\ E\{x_k \mid I_k\} + u_k - 1, & \text{if } z_{k+1} - E\{x_k \mid I_k\} - u_k = -1 \pm \frac{1}{4} \end{cases}$$

An alternative approach to compute $E\{x_k | I_k\}$ is based on the fact that:

$$x_k - \sum_{i=0}^{k-1} u_i = x_0 + \sum_{i=0}^{k-1} w_i \in Integers$$

since x_0 and w_k take on integer values. So we have:

$$z_k - \sum_{i=0}^{k-1} u_i = x_k - \sum_{i=0}^{k-1} u_i + v_k \in Integer \pm \frac{1}{4}.$$

Thus the estimator will be the true value of x_k which is the nearest integer to $z_k - \sum u_i$ plus $\sum u_i$.

Exercise 5.7

a) We have

$$p_{k+1}^{j} = P(x_{k+1} = j \mid z_{0}, \dots, z_{k+1}, u_{0}, \dots, u_{k})$$

$$= P(x_{k+1} = j \mid I_{k+1})$$

$$= \frac{P(x_{k+1} = j, z_{k+1} \mid I_{k}, u_{k})}{P(z_{k+1} \mid I_{k}, u_{k})}$$

$$= \frac{\sum_{i=1}^{n} P(x_{k} = i)P(x_{k+1} = j \mid x_{k} = i, u_{k})P(z_{k+1} \mid u_{k}, x_{k+1} = j)}{\sum_{s=1}^{n} \sum_{i=1}^{n} P(x_{k} = i)P(x_{k+1} = s \mid x_{k} = i, u_{k})P(z_{k+1} \mid u_{k}, x_{k+1} = s)}$$

$$= \frac{\sum_{i=1}^{n} p_{k}^{i} p_{ij}(u_{k}) r_{j}(u_{k}, z_{k+1})}{\sum_{s=1}^{n} \sum_{i=1}^{n} p_{k}^{i} p_{is}(u_{k}) r_{s}(u_{k}, z_{k+1})}.$$

Rewriting p_{k+1}^j in vector form, we have

$$p_{k+1}^{j} = \frac{r_{j}(u_{k}, z_{k+1})[P(u_{k})'P_{k}]_{j}}{\sum_{s=1}^{n} r_{s}(u_{k}, z_{k+1})[P(u_{k})'P_{k}]_{s}}, \qquad j = 1, \dots, n.$$

Therefore,

$$P_{k+1} = \frac{[r(u_k, z_{k+1})] * [P(u_k)'P_k]}{r(u_k, z_{k+1})'P(u_k)'P_k}.$$

b) The DP algorithm for this system is:

$$\bar{J}_{N-1}(P_{N-1}) = \min_{u} \left\{ \sum_{i=1}^{n} p_{N-1}^{i} \sum_{j=1}^{n} p_{ij}(u) g_{N-1}(i, u, j) \right\}$$
$$= \min_{u} \left\{ \sum_{i=1}^{n} p_{N-1}^{i} [G_{N-1}(u)]_{i} \right\}$$
$$= \min_{u} \left\{ P_{N-1}' G_{N-1}(u) \right\}$$

$$\bar{J}_{k}(P_{k}) = \min_{u} \left\{ \sum_{i=1}^{n} p_{k}^{i} \sum_{j=1}^{n} p_{ij}(u) g_{k}(i, u, j) + \sum_{i=1}^{n} p_{k}^{i} \sum_{j=1}^{n} p_{ij}(u) \sum_{\theta=1}^{q} r_{j}(u, \theta) \bar{J}_{k+1}(P_{k+1} \mid P_{k}, u, \theta) \right\}$$
$$= \min_{u} \left\{ P_{k}^{\prime} G_{k}(u) + \sum_{\theta=1}^{q} r(u, \theta)^{\prime} P(u)^{\prime} P_{k} \bar{J}_{k+1} \left[\frac{[r(u, \theta)] * [P(u)^{\prime} P_{k}]}{r(u, \theta)^{\prime} P(u)^{\prime} P_{k}} \right] \right\}.$$

c) For k = N - 1,

$$\begin{split} \bar{J}_{N-1}(\lambda P'_{N-1}) &= \min_{u} \left\{ \lambda P'_{N-1} G_{N-1}(u) \right\} \\ &= \min_{u} \left\{ \sum_{i=1}^{n} \lambda p^{i}_{N-1} [G_{N-1}(u)]_{i} \right\} \\ &= \min_{u} \left\{ \lambda \sum_{i=1}^{n} p^{i}_{N-1} [G_{N-1}(u)]_{i} \right\} \\ &= \lambda \min_{u} \left\{ \sum_{i=1}^{n} p^{i}_{N-1} [G_{N-1}(u)]_{i} \right\} \\ &= \lambda \min_{u} \left\{ \sum_{i=1}^{n} p^{i}_{N-1} [G_{N-1}(u)]_{i} \right\} \\ &= \lambda \bar{J}_{N-1} (P_{N-1}). \end{split}$$

Now assume $\bar{J}_k(\lambda P_k) = \lambda \bar{J}_k(P_k)$. Then,

$$\bar{J}_{k-1}(\lambda P'_{k-1}) = \min_{u} \left\{ \lambda P'_{k-1} G_{k-1}(u) + \sum_{\theta=1}^{q} r(u,\theta)' P(u)' \lambda P_{k-1} \bar{J}_{k}(P_{k}|P_{k-1},u,\theta) \right\}$$
$$= \min_{u} \left\{ \lambda P'_{k-1} G_{k-1}(u) + \lambda \sum_{\theta=1}^{q} r(u,\theta)' P(u)' P_{k-1} \bar{J}_{k}(P_{k}|P_{k-1},u,\theta) \right\}$$
$$= \lambda \min_{u} \left\{ P'_{k-1} G_{k-1}(u) + \sum_{\theta=1}^{q} r(u,\theta)' P(u)' P_{k-1} \bar{J}_{k}(P_{k}|P_{k-1},u,\theta) \right\}$$
$$= \lambda \bar{J}_{k-1}(P_{k-1}). \qquad \text{Q.E.D.}$$

For any $u, r(u, \theta)' P(u)' P_k$ is a scalar. Therefore, letting $\lambda = r(u, \theta)' P(u)' P_k$, we have

$$\bar{J}_{k}(P_{k}) = \min_{u} \left\{ P_{k}'G_{k}(u) + \sum_{\theta=1}^{q} r(u,\theta)'P(u)'P_{k}\bar{J}_{k+1} \left[\frac{[r(u,\theta)] * [P(u)'P_{k}]}{r(u,\theta)'P(u)'P_{k}} \right] \right\}$$
$$= \min_{u} \left[P_{k}'G_{k}(u) + \sum_{\theta=1}^{q} \bar{J}_{k+1} \left([r(u,\theta)] * [P(u)'P_{k}] \right) \right].$$

d) For k = N - 1, we have $\bar{J}_{N-1}(P_{N-1}) = \min_{u} [P'_{N-1}G_{N-1}(u)]$, and so $\bar{J}_{N-1}(P_{N-1})$ has the desired form

$$\bar{J}_{N-1}(P_{N-1}) = \min\left[P'_{N-1}\alpha^1_{N-1}, \dots, P'_{N-1}\alpha^m_{N-1}\right],$$

where $\alpha_{N-1}^j = G_{N-1}(u^j)$ and u^j is the *j*th element of the control constraint set. Assume that

$$\bar{J}_{k+1}(P_{k+1}) = \min[P'_{k+1}\alpha^1_{k+1},\ldots,P'_{k+1}\alpha^m_{k+1}].$$

Then, using the expression from part (c) for $\bar{J}_k(P_k)$,

$$\begin{split} \bar{J}_{k}(P_{k}) &= \min_{u} \left[P_{k}'G_{k}(u) + \sum_{\theta=1}^{q} \bar{J}_{k+1}([r(u,\theta)] * [P(u)'P_{k}]) \right] \\ &= \min_{u} \left[P_{k}'G_{k}(u) + \sum_{\theta=1}^{q} \min_{m=1,\dots,m_{k+1}} \left[\left\{ [r(u,\theta)] * [P(u)'P_{k}] \right\}' \alpha_{k+1}^{m} \right] \right] \\ &= \min_{u} \left[P_{k}'G_{k}(u) + \sum_{\theta=1}^{q} \min_{m=1,\dots,m_{k+1}} \left[P_{k}'P(u)r(u,\theta)' \alpha_{k+1}^{m} \right] \right] \\ &= \min_{u} \left[P_{k}' \left\{ G_{k}(u) + \sum_{\theta=1}^{q} \min_{m=1,\dots,m_{k+1}} \left[P(u)r(u,\theta)' \alpha_{k+1}^{m} \right] \right\} \right] \\ &= \min\left[P_{k}' \alpha_{k}^{1}, \dots, P_{k}' \alpha_{k}^{m_{k}} \right], \end{split}$$

where $\alpha_k^1, \ldots, \alpha_k^{m_k}$ are all possible vectors of the form

$$G_k(u) + \sum_{\theta=1}^q P(u)r(u,\theta)'\alpha_{k+1}^{m_{u,\theta}},$$

as u ranges over the finite set of controls, θ ranges over the set of observation vector indexes $\{1, \ldots, q\}$, and $m_{u,\theta}$ ranges over the set of indexes $\{1, \ldots, m_{k+1}\}$. The induction is thus complete.

For a quick way to understand the preceding proof, based on polyhedral concavity notions, note that the conclusion is equivalent to asserting that $\bar{J}_k(P_k)$ is a positively homogeneous, concave polyhedral function. The preceding induction argument amounts to showing that the DP formula of part (c) preserves the positively homogeneous, concave polyhedral property of $\bar{J}_{k+1}(P_{k+1})$. This is indeed evident from the formula, since taking minima and nonnegative weighted sums of positively homogeneous, concave polyhedral functions results in a positively homogeneous, concave polyhedral function.

Exercise 5.14

- a) The state is (x_k, d_k) , where x_k is the current offer under consideration and d_k takes the value 1 or 2 depending on whether the common distribution of the system disturbance, w_k , is F_1 or F_2 . The variable d_k stays constant (i.e., satisfies $d_{k+1} = d_k$ for all k), but is not observed perfectly. Instead, the sample offer values w_0, w_1, \ldots are observed ($w_k = x_{k+1}$), and provide information regarding the value of d_k . In particular, given the a priori probability q and the demand values w_0, \ldots, w_{k-1} , we can calculate the conditional probability that w_k will be generated according to F_1 .
- b) A suitable sufficient statistic is (x_k, q_k) , where

$$q_k = P(d_k = 1 \mid w_0, \dots, w_{k-1}).$$

The conditional probability q_k evolves according to

$$q_{k+1} = \frac{q_k F_1(w_k)}{q_k F_1(w_k) + (1 - q_k) F_2(w_k)}, \qquad q_0 = q,$$

where $F_i(w_k)$ denotes probability under the distribution F_i , and assuming that w_k can take a finite number of values under the distributions F_1 and F_2 . Let w^1, w^2, \ldots, w^n be the possible values w_k can take under either distribution.

We have the following DP algorithm:

$$J_N(x_N, q_N) = x_N$$

$$J_k(x_k, q_k) = \max\left[(1+r)^{N-k} x_k, E\{J_{k+1}(x_{k+1}, q_{k+1})\} \right]$$

$$= \max\left[(1+r)^{N-k} x_k, \sum_{i=1}^n \left(q_k F_1(w^i) + (1-q_k) F_2(w^i) \right) J_{k+1} \left(w^i, \frac{q_k F_1(w^i)}{q_k F_1(w^i) + (1-q_k) F_2(w^i)} \right) \right]$$

As in the text, we renormalize the cost-to go so that each stage has the same cost function for stopping. Let

$$V_k(x_k, q_k) = \frac{J_k(x_k, q_k)}{(1+r)^{N-k}}$$

Then we have

$$V_N(x_N, q_N) = x_N,$$
$$V_k(x_k, q_k) = \max \left[x_k, \alpha_k(q_k) \right],$$

where

$$\alpha_k(q_k) = (1+r)^{-1} \sum_{i=1}^n \left(q_k F_1(w^i) + (1-q_k) F_2(w^i) \right) V_{k+1} \left(w^i, \frac{q_k F_1(w^i)}{q_k F_1(w^i) + (1-q_k) F_2(w^i)} \right),$$

which is independent of x_k . Each stopping set therefore has a threshold format, $T_k = \{x \mid x \ge \alpha_k(q_k)\}$, where the threshold depends on q_k .

Because $V_{N-1}(x,q) \ge V_N(x,q)$ for all x,q, we have by the monotonicity property for stationary problems that $V_k(x,q) \ge V_{k+1}(x,q)$ for all x,q,k, which implies $\alpha_k(q) \ge \alpha_{k+1}(q)$ for all q,k.

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.