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Prof. Dimitri Bertsekas

Problem 1 (50 points)

Consider the scalar linear system xk+1 = axk + buk, where the nonzero
scalars a and b are known. At each period k we have the option of using a
control uk and incurring a cost qx2k + ru2k, or else stopping and incurring a
stopping cost tx2k (we may have t 6= q). At the final period N , if we have
not already stopped, the terminal cost is the same as the stopping cost,
i.e., gN (xN ) = tx2N . We assume that the scalars q, r, and t are positive.

(a) Consider first the restricted optimization over policies that never stop,
except at time N , so we obtain a standard linear quadratic problem,
whose optimal cost function has the form

J (x ) = K x20 0 0 0,

where K0 is a positive scalar that depends on N . Write the Riccati
equation that yields K0 as well as the steady-state equation that has
K̄, the limit of K0 as N →∞, as its solution. Does the steady-state
equation have any other solutions?

(b) Consider the unrestricted optimization where stopping is also allowed.
Write the DP algorithm for this problem.

(c) Show that for the problem of part (b) there is a threshold value t̄
such that if t > t̄ immediate stopping is optimal at every state, and if
t < t̄ continuing at every state xk and period k is optimal. How are

¯the scalars K and t̄ of parts (a) and (c) related?

(d) State an extension of the result of part (c) for the case of a multidi-
mensional system.

Solution: (a) Consider the restricted version of the problem where no
stopping is allowed. The cost-to-go functions for this problem solve the
system:

Jk(xk) = min qx2k + ru2k + Jk+1(axk + buk)
uk

and JN (xN ) = tx2N . These

{
cost-to-go functions are obtained

}
from the

Riccati equation. We have

Vk(x) = Kkx2

where:

a2rK− − k+1
K 2 1
k = a2[K +1 K2

k+1b
2

k (r + b Kk+1) ] + q =
r + b2Kk+1

+ q,
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and KN = t. The steady-state equation is

a2Kr
K = + q, (1)

r + b2K

and has two solutions, one positive and one negative (cf. Fig. 4.1.2). The
¯positive solution is K, the limit of the equation as k → −∞.

(b) For the original problem, where a stopping control is allowed, the DP
algorithm is given by

JN (x 2
N ) = txN ,

J (x ) = min
[
tx2k k k, Vk(xk)

}]
,

where
Vk(x 2 2

k) = min
{
qxk + ruk + Jk+1(axk + buk)

uk

}
.

Assume that
a2tr

+ q
r + b2t

≥ t. (2)

Then
JN−1(x 2 2

N−1) = min txN−1, VN−1(xN 1) = tx− N−1

and stopping is optimal for all x

[
N−1. Since

]

JN−1(x) = JN (x) = tx2,

the argument can be repeated for stage N − 2 all the way to stage 0.
Now assume that

a2tr
+ q

tb2 + r
≤ t. (3)

Then
VN 1(xN 1) ≤ tx2− − N−1, ∀ x,

so not stopping is optimal for all xN 1. Since the system and cost per−
stage are stationary, the monotonicity property of DP yields

JN 1(xN 1) ≤ JN (xN 1), ∀ x ⇒ Jk(x) J− − − ≤ k+1(x), ∀ x, k

Assume that stopping is not optimal for all xk. Then

tx2 ≥ min
{
qx2 + ru2 + Jk+1(ax+ bu)

u

≥ min qx2 + ru2 + Jk(ax+ bu)
u

}

= Vk−1

{
(x),

}

so stopping is not optimal for all xk−1.
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(c) The threshold value t̄ is the positive solution of the equation

a2tr
+ q = t.

r + b2t

Thus t̄ ¯is equal to K [cf. Eqs. (1)-(3)].

(d) Consider a quadratic stopping cost of the form x′Tx where T is positive
definite symmetric. Then if T − K̄ is negative semidefinite, stopping at

− ¯every state is optimal, while if T K is positive semidefinite, never stopping
is optimal.

Problem 2 (50 points)

Consider a situation involving a blackmailer and his victim. At each stage
the blackmailer has a choice of:

(1) Retiring with his accumulated blackmail earnings.

(2) Demanding a payment of $ 1, in which case the victim will comply
with the demand (this happens with probability p, independently of
the past history), or will refuse to pay and denounce the blackmailer
to the police (this happens with probability 1− p).

Once denounced to the police, the blackmailer loses all of his accumulated
earnings and cannot blackmail again. Also, the blackmailer will retire once
he reaches accumulated earnings of $ n, where n is a given integer that may
be assumed very large for the purposes of this problem. The blackmailer
wants to maximize the expected amount of money he ends up with.

(a) Formulate the problem as a stochastic shortest path problem with
states i = 0, 1, . . . , n, plus a termination state,

(b) Write Bellman’s equation and justify that its unique solution is the
optimal value function J∗(i).

(c) Use value iteration to show that J∗(i) is monotonically increasing
with i, and that J∗(i) = i for all i larger than a suitable scalar.

(d) Start policy iteration with the policy where the blackmailer retires
at every i. Derive the sequence of generated policies and the optimal
policy. How many iterations are needed for convergence?

Solution: (a) The state of the SSP problem is the accumulated earnings
of the blackmailer, and takes values i = 0, 1, . . . , n. The termination state,
denoted t, is reached in two ways: 1) Upon retirement at state i, in which
case the reward for the transition from i to t is $ i, or 2) Upon denouncement
to the police, which happens upon blackmail from state i with probability
1 − p, with transition reward equal to 0. The other transitions are from i
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to i+ 1, which happen upon blackmail from state i with probability p, and
have reward 0. This is a full description of the SSP problem.

(b) Bellman’s equation is

J∗(i) = max
[
i, pJ∗(i+ 1)

]
, i = 0, 1, . . . , n− 1,

J∗(n) = n.

Its unique solution is the optimal value function J∗, since termination
occurs within n steps from every initial state and under every policy.

(c) We consider VI starting from the identically zero function. It has the
form

J0(i) = 0, i = 0, 1, . . . , n,{
max

[
i, pJk(i+ 1) ,

Jk+1(i) =

]
if i = 0, 1, . . . , n− 1,

n, if i = n.

We have J1(i) = i for all i, so J1 ≥ J0, and J1 is monotonically increasing
as a function of i. By monotonicity of the DP mapping, it follows that
Jk+1 ≥ Jk for all k, and by induction it is seen that Jk(i) is monotonically
increasing as a function of i for all k. Since Jk(i) ↑ J∗(i), it follows that
J∗(i) is also monotonically increasing as a function of i.

Since J1(i) = i for all i, we have{
max

[
i, p(i+ 1) , if i = 0, 1, . . . , n 1,

J2(i) =
−

n,

]
if i = n,

so J2(i) = i for i ≥ p(i+ 1) or i ≥ p . We use this as the first step in an1−p
induction that will show that for all k, we have Jk(i) = i for i ≥ p .1−p

Indeed by using the induction hypothesis, we have

[ ] [ ] p
Jk+1(i) = max i, pJk(i+ 1) = max i, p(i+ 1) , ∀ i ≥ .

1− p

Since we have

p
i ≥ if and only if max i, p(i+ 1) = i,

1− p
[ ]

it follows that Jk+1(i) = i for all i ≥ p , thus completing the induction.1−p
Since Jk(i) ↑ J∗(i), it follows that J∗(i) = i for all i ≥ p .1−p

(d) With µ0 being the policy that retires for all i, we have the policy
evaluation

Jµ0(i) = i, i = 0, 1, . . . , n.
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In the corresponding policy improvement, we compare i with pJµ0(i+1) =
p(i + 1), and we obtain that the improved policy µ1 retires if and only if
i ≥ p . The policy evaluation of µ1 yields1−p

p
Jµ1(i) = i, if i ≥ .

1− p

In the corresponding policy improvement, we compare i with pJµ1(i + 1)
which is equal to p(i+ 1) for i ≥ p

1−p . It follows if i ≥ p , then µ2 retires.1−p
Also i ≤ p , we have1−p

i ≤ p(i+ 1) ≤ pJµ1(i+ 1),

since Jµ1(i+ 1) ≥ i+ 1 by the fact that µ1 is an improved policy over µ0.
This shows that if i ≤ p

1−p , then µ2 does not retire. Thus µ2 retires if

and only if i ≥ p , so it is identical to µ1. It follows that policy iteration1−p
terminates with µ2, which is an optimal policy.
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