
6.231 DYNAMIC PROGRAMMING

LECTURE 10

LECTURE OUTLINE

• Infinite horizon problems

• Stochastic shortest path (SSP) problems

• Bellman’s equation

• Dynamic programming – value iteration

• Discounted problems as special case of SSP
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TYPES OF INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:

− The number of stages is infinite.

− Stationary system and cost (except for dis-
counting).

• Total cost problems: Minimize
N−1

Jπ(x0) = lim E

{

∑

αkg
(

xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

}

)

(if the lim exists - otherwise lim sup).

− Stochastic shortest path (SSP) problems (α =
1, and a termination state)

− Discounted problems (α < 1, bounded g)

− Undiscounted, and discounted problems with
unbounded g

• Average cost problems

1
lim

N→∞

N

E
N wk

k=0,1,...

{

−1
∑

g xk, µk(xk), wk

k=0

}

( )

• Infinite horizon characteristics: Challenging anal-
ysis, elegance of solutions and algorithms (station-
ary optimal policies are likely)
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PREVIEW OF INFINITE HORIZON RESULTS

• Key issue: The relation between the infinite and
finite horizon optimal cost-to-go functions.

• For example, let α = 1 and JN (x) denote the
optimal cost of the N-stage problem, generated
after N DP iterations, starting from some J0

Jk+1(x) = min E
{

g(x, u, w) + Jk f(x, u, w) , ∀ x
u∈U(x) w

• Typical results for total cost p

(

roblems:

)}

− Convergence of value iteration to J∗:

J∗(x) = min Jπ(x) = lim JN (x), ∀ x
π N→∞

− Bellman’s equation holds for all x:

J∗(x) = min x ∗
E
{

g( , u, w) + J f(x, u, w)
u∈U(x) w

− Optimality condition: If µ(x) m

(

inimizes

)

i

}

n
Bellman’s Eq., {µ, µ, . . .} is optimal.

• Bellman’s Eq. holds for all deterministic prob-
lems and “almost all” stochastic problems.

• Other results: True for SSP and discounted;
exceptions for other problems.
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“EASY” AND “DIFFICULT” PROBLEMS

• Easy problems (Chapter 7, Vol. I of text)

− All of them are finite-state, finite-control

− Bellman’s equation has unique solution

− Optimal policies obtained from Bellman Eq.

− Value and policy iteration algorithms apply

• Somewhat complicated problems

− Infinite state, discounted, bounded g (con-
tractive structure)

− Finite-state SSP with “nearly” contractive
structure

− Bellman’s equation has unique solution, value
and policy iteration work

• Difficult problems (w/ additional structure)

− Infinite state, g ≥ 0 or g ≤ 0 (for all x, u, w)

− Infinite state deterministic problems

− SSP without contractive structure

• Hugely large and/or model-free problems

− Big state space and/or simulation model

− Approximate DP methods

• Measure theoretic formulations (not in this course)
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STOCHASTIC SHORTEST PATH PROBLEMS

• Assume finite-state system: States 1, . . . , n and
special cost-free termination state t

− Transition probabilities pij(u)

− Control constraints u ∈ U(i) (finite set)

− Cost of policy π = {µ0, µ1, . . .} is

{

N−1

Jπ(i) = lim E
N→∞

∑

g

k=0

(

xk, µk(xk)
)

∣

∣

x0 = i

}

− Optimal policy if Jπ(i) = J∗(i) for

∣

all i.

− Special notation: For stationary policies π =
{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i).

• Assumption (termination inevitable): There ex-
ists integer m such that for all policies π:

ρπ = max P{xm 6= t | x0 = i, π} < 1
i=1,...,n

• Note: We have ρ = maxπ ρπ < 1, since ρπ de-
pends only on the first m components of π.

• Shortest path examples: Acyclic (assumption is
satisfied); nonacyclic (assumption is not satisfied)
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FINITENESS OF POLICY COST FUNCTIONS

• View
ρ = max ρπ < 1

π

as an upper bound on the non-termination prob.
during 1st m steps, regardless of policy used

• For any π and any initial state i

P{x2m 6= t | x0 = i, π} = P{x2m 6= t | xm 6= t, x0 = i, π}

× P{xm 6= t | x0 = i, π} ≤ ρ2

and similarly

P{xkm 6= t | x0 = i, π} ≤ ρk, i = 1, . . . , n

• So E{Cost between times km and (k + 1)m− 1 }

≤ mρk max g(i, u)
i=1,...,n

and u∈U(i)

∣

∣ ∣

∣

∞
∣ m
∣Jπ(i)

∣

∣ ≤
∑

mρk max g(i, u) =
i=1,...,n

k=0 u∈U(i)

∣

∣ ∣

∣

1− ρ
max

i=1,...,n
u∈U(i)

∣

∣g(i, u)
∣

∣
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MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n), the
sequence Jk(i) generated by value iteration,

Jk+1(i) = min
u∈U(i)

[

n

g(i, u) +
∑

pij(u)Jk(j)

j=1

]

, ∀ i

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

n

J∗(i) = min g(i, u) + p ∗
ij(u)J (j) , ∀ i

u∈U(i)

[

∑

j=1

]

J∗(t) = 0

• A stationary policy µ is optimal if and only
if for every state i, µ(i) attains the minimum in
Bellman’s equation.

• Key proof idea: The “tail” of the cost series,

∞
∑

E
{

g
(

xk, µk(xk)

k=mK

)}

vanishes as K increases to ∞.

7



OUTLINE OF PROOF THAT JN → J∗

• Assume for simplicity that J0(i) = 0 for all i.
For any K ≥ 1, write the cost of any policy π as

mK−1 ∞

Jπ(x0) =
∑

E

k=0

{

g
(

xk, µk(xk)

mK−1

)}

+
∑

E
{

g
(

xk, µk(xk)

k=mK

∞

)}

≤
∑

E
{

g
(

xk, µk(xk) +

k=0

)}

k

∑

kρ mmax |g(i, u)|
i,u

=K

Take the minimum of both sides over π to obtain

K

J∗ ρ
(x0) ≤ JmK(x0) + mmax |g(i, u)|.

1− ρ i,u

Similarly, we have

ρK
JmK(x0)− mmax |g(i, u)| ≤ J∗(x0).

1− ρ i,u

It follows that limK→∞ JmK(x ∗
0) = J (x0).

• JmK(x0) and JmK+k(x0) converge to the same
limit for k < m (since k extra steps far into the
future don’t matter), so JN (x0) → J∗(x0).

• Similarly, J0 6= 0 does not matter.
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EXAMPLE

• Minimizing the E{Time to Termination}: Let

g(i, u) = 1, ∀ i = 1, . . . , n, u ∈ U(i)

• Under our assumptions, the costs J∗(i) uniquely
solve Bellman’s equation, which has the form

n

J∗(i) = min 1 + pij(u)J
∗(j) , i = 1, . . . , n

u∈U(i)

[

j=1

]

∑

• In the special case where there is only one con-
trol at each state, J∗(i) is the mean first passage
time from i to t. These times, denoted mi, are the
unique solution of the classical equations

n

mi = 1 +
∑

pijmj , i = 1, . . . , n,

j=1

which are seen to be a form of Bellman’s equation
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