6.231 DYNAMIC PROGRAMMING

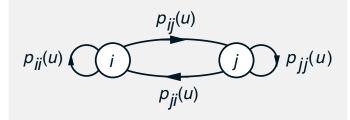
LECTURE 4

LECTURE OUTLINE

- Review of approximation in value space
- Approximate VI and PI
- Projected Bellman equations
- Matrix form of the projected equation
- Simulation-based implementation
- LSTD and LSPE methods
- Optimistic versions
- Multistep projected Bellman equations
- Bias-variance tradeoff

DISCOUNTED MDP

- System: Controlled Markov chain with states i = 1, ..., n and finite set of controls $u \in U(i)$
- Transition probabilities: $p_{ij}(u)$



• Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$ starting at state *i*:

$$J_{\pi}(i) = \lim_{N \to \infty} E\left\{ \sum_{k=0}^{N} \alpha^{k} g(i_{k}, \mu_{k}(i_{k}), i_{k+1}) \mid i = i_{0} \right\}$$

with $\alpha \in [0,1)$

• Shorthand notation for DP mappings

$$(TJ)(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha J(j) \right), \quad i = 1, \dots, n,$$

$$(T_{\mu}J)(i) = \sum_{j=1}^{n} p_{ij}(\mu(i)) (g(i,\mu(i),j) + \alpha J(j)), \quad i = 1, \dots, n$$

"SHORTHAND" THEORY – A SUMMARY

• Bellman's equation: $J^* = TJ^*$, $J_{\mu} = T_{\mu}J_{\mu}$ or

$$J^{*}(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J^{*}(j)), \quad \forall i$$

$$J_{\mu}(i) = \sum_{j=1}^{n} p_{ij}(\mu(i)) \left(g(i,\mu(i),j) + \alpha J_{\mu}(j)\right), \quad \forall i$$

- Optimality condition:
 - μ : optimal $\langle == \rangle \quad T_{\mu}J^* = TJ^*$

i.e.,

$$\mu(i) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \big(g(i, u, j) + \alpha J^*(j) \big), \quad \forall i$$

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any $J \in \Re^n$

$$J^*(i) = \lim_{k \to \infty} (T^k J)(i), \qquad \forall \ i = 1, \dots, n$$

• Policy iteration: Given μ^k - Policy evaluation: Find J_{μ^k} by solving

$$J_{\mu^{k}}(i) = \sum_{j=1}^{n} p_{ij} \left(\mu^{k}(i) \right) \left(g \left(i, \mu^{k}(i), j \right) + \alpha J_{\mu^{k}}(j) \right), \quad i = 1, \dots, n$$

or
$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Let μ^{k+1} be such that

$$\mu^{k+1}(i) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J_{\mu^k}(j)), \quad \forall i$$

or $T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$

• Policy evaluation is equivalent to solving an $n \times n$ linear system of equations

• For large n, exact PI is out of the question (even though it terminates finitely)

APPROXIMATION IN VALUE SPACE

• Approximate J^* or J_{μ} from a parametric class $\tilde{J}(i, r)$, where *i* is the current state and $r = (r_1, \ldots, r_m)$ is a vector of "tunable" scalars weights.

• By adjusting r we can change the "shape" of J so that it is close to the true optimal J^* .

• Any $r \in \Re^s$ defines a (suboptimal) one-step lookahead policy

$$\tilde{\mu}(i) = \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \big(g(i, u, j) + \alpha \tilde{J}(j, r) \big), \quad \forall i$$

• We will focus mostly on linear architectures

$$\tilde{J}(r) = \Phi r$$

where Φ is an $n \times s$ matrix whose columns are viewed as basis functions

• Think n: HUGE, s: (Relatively) SMALL

• For $\tilde{J}(r) = \Phi r$, approximation in value space means approximation of J^* or J_{μ} within the subspace

$$S = \{ \Phi r \mid r \in \Re^s \}$$

APPROXIMATE VI

• Approximates sequentially $J_k(i) = (T^k J_0)(i)$, $k = 1, 2, \ldots$, with $\tilde{J}_k(i, r_k)$

• The starting function J_0 is given (e.g., $J_0 \equiv 0$)

• After a large enough number N of steps, $\tilde{J}_N(i, r_N)$ is used as approximation $\tilde{J}(i, r)$ to $J^*(i)$

• Fitted Value Iteration: A sequential "fit" to produce \tilde{J}_{k+1} from \tilde{J}_k , i.e., $\tilde{J}_{k+1} \approx T\tilde{J}_k$ or (for a single policy μ) $\tilde{J}_{k+1} \approx T_{\mu}\tilde{J}_k$

- For a "small" subset S_k of states *i*, compute

$$(T\tilde{J}_k)(i) = \min_{u \in U(i)} \sum_{j=1}^n p_{ij}(u) \left(g(i, u, j) + \alpha \tilde{J}_k(j, r) \right)$$

- "Fit" the function $\tilde{J}_{k+1}(i, r_{k+1})$ to the "small" set of values $(T\tilde{J}_k)(i), i \in S_k$
- Simulation can be used for "model-free" implementation

• Error Bound: If the fit is uniformly accurate within $\delta > 0$ (i.e., $\max_i |\tilde{J}_{k+1}(i) - T\tilde{J}_k(i)| \leq \delta$),

$$\lim \sup_{k \to \infty} \max_{i=1,\dots,n} \left(\tilde{J}_k(i, r_k) - J^*(i) \right) \le \frac{2\alpha\delta}{(1-\alpha)^2}$$

AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states 1 and 2, and a single policy.

- Deterministic transitions: $1 \rightarrow 2$ and $2 \rightarrow 2$
- Transition costs $\equiv 0$, so $J^*(1) = J^*(2) = 0$.

• Consider approximate VI scheme that approximates cost functions in $S = \{(r, 2r) \mid r \in \Re\}$ with a weighted least squares fit; here $\Phi = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

• Given $J_k = (r_k, 2r_k)$, we find $J_{k+1} = (r_{k+1}, 2r_{k+1})$, where for weights $\xi_1, \xi_2 > 0, r_{k+1}$ is obtained as

$$r_{k+1} = \arg\min_{r} \left[\xi_1 \left(r - (TJ_k)(1) \right)^2 + \xi_2 \left(2r - (TJ_k)(2) \right)^2 \right]$$

• With straightforward calculation

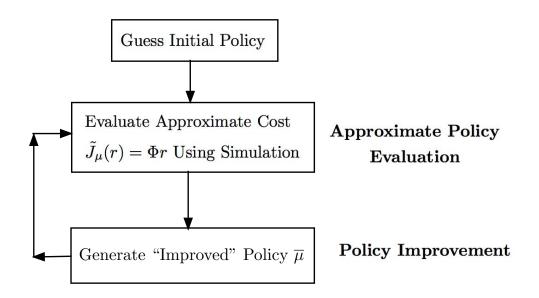
 $r_{k+1} = \alpha \beta r_k$, where $\beta = 2(\xi_1 + 2\xi_2)/(\xi_1 + 4\xi_2) > 1$ • So if $\alpha > 1/\beta$, the sequence $\{r_k\}$ diverges and so does $\{J_k\}$.

• Difficulty is that T is a contraction, but ΠT (= least squares fit composed with T) is not

7

• Norm mismatch problem

APPROXIMATE PI



Evaluation of typical policy μ : Linear cost function approximation $\tilde{J}_{\mu}(r) = \Phi r$, where Φ is full rank $n \times s$ matrix with columns the basis functions, and *i*th row denoted $\phi(i)'$.

Policy "improvement" to generate $\overline{\mu}$:

$$\overline{\mu}(i) = \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \phi(j)' r \right)$$

Error Bound: If

$$\max_{i} |\tilde{J}_{\mu^{k}}(i, r_{k}) - J_{\mu^{k}}(i)| \leq \delta, \qquad k = 0, 1, \dots$$

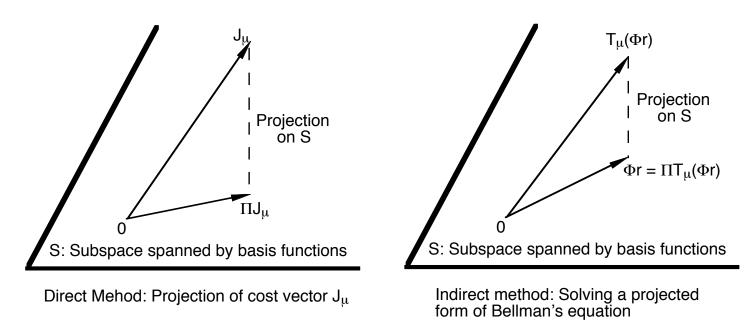
The sequence $\{\mu^{k}\}$ satisfies

$$\limsup_{k \to \infty} \max_{i} \left(J_{\mu^{k}}(i) - J^{*}(i) \right) \leq \frac{2\alpha\delta}{(1-\alpha)^{2}}$$

0

POLICY EVALUATION

- Let's consider approximate evaluation of the cost of the current policy by using simulation.
 - Direct policy evaluation Cost samples generated by simulation, and optimization by least squares
 - Indirect policy evaluation solving the projected equation $\Phi r = \Pi T_{\mu}(\Phi r)$ where Π is projection w/ respect to a suitable weighted Euclidean norm



• Recall that projection can be implemented by simulation and least squares

WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

$$||J||_{\xi} = \sqrt{\sum_{i=1}^{n} \xi_i (J(i))^2},$$

where ξ is a vector of positive weights ξ_1, \ldots, ξ_n .

• Let Π denote the projection operation onto

$$S = \{\Phi r \mid r \in \Re^s\}$$

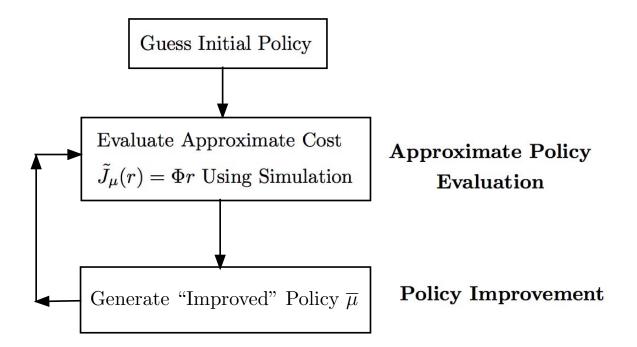
with respect to this norm, i.e., for any $J \in \Re^n$,

$$\Pi J = \Phi r^*$$

where

$$r^* = \arg\min_{r \in \Re^s} \|J - \Phi r\|_{\xi}^2$$

PI WITH INDIRECT POLICY EVALUATION



- Given the current policy μ :
 - We solve the projected Bellman's equation

$$\Phi r = \Pi T_{\mu}(\Phi r)$$

- We approximate the solution J_{μ} of Bellman's equation

$$J = T_{\mu}J$$

with the projected equation solution $J_{\mu}(r)$

KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠT_{μ} a contraction, so ΠT_{μ} has unique fixed point?

• Assuming ΠT_{μ} has unique fixed point Φr^* , how close is Φr^* to J_{μ} ?

• Assumption: The Markov chain corresponding to μ has a single recurrent class and no transient states, i.e., it has steady-state probabilities that are positive

$$\xi_j = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^N P(i_k = j \mid i_0 = i) > 0$$

- Proposition: (Norm Matching Property)
 - (a) ΠT_{μ} is contraction of modulus α with respect to the weighted Euclidean norm $\|\cdot\|_{\xi}$, where $\xi = (\xi_1, \ldots, \xi_n)$ is the steady-state probability vector.
 - (b) The unique fixed point Φr^* of ΠT_{μ} satisfies

$$||J_{\mu} - \Phi r^*||_{\xi} \le \frac{1}{\sqrt{1 - \alpha^2}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}$$

PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S with weighted Euclidean norm $\|\cdot\|_{\xi}$. For all $J \in \Re^n$, $\overline{J} \in S$, the Pythagorean Theorem holds:

$$\|J - \overline{J}\|_{\xi}^{2} = \|J - \Pi J\|_{\xi}^{2} + \|\Pi J - \overline{J}\|_{\xi}^{2}$$

Proof: Geometrically, $(J - \Pi J)$ and $(\Pi J - \overline{J})$ are orthogonal in the scaled geometry of the norm $\|\cdot\|_{\xi}$, where two vectors $x, y \in \Re^n$ are orthogonal if $\sum_{i=1}^n \xi_i x_i y_i = 0$. Expand the quadratic in the RHS below:

$$||J - \overline{J}||_{\xi}^{2} = ||(J - \Pi J) + (\Pi J - \overline{J})||_{\xi}^{2}$$

• The Pythagorean Theorem implies that the projection is nonexpansive, i.e.,

 $\|\Pi J - \Pi \overline{J}\|_{\xi} \le \|J - \overline{J}\|_{\xi}, \quad \text{for all } J, \overline{J} \in \Re^n.$

To see this, note that

$$\begin{aligned} \left\|\Pi(J-\overline{J})\right\|_{\xi}^{2} &\leq \left\|\Pi(J-\overline{J})\right\|_{\xi}^{2} + \left\|(I-\Pi)(J-\overline{J})\right\|_{\xi}^{2} \\ &= \|J-\overline{J}\|_{\xi}^{2} \end{aligned}$$

PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of μ ,

$$\|Pz\|_{\xi} \le \|z\|_{\xi}, \qquad z \in \Re^n$$

Proof: Let p_{ij} be the components of P. For all $z \in \Re^n$, we have

$$\|Pz\|_{\xi}^{2} = \sum_{i=1}^{n} \xi_{i} \left(\sum_{j=1}^{n} p_{ij} z_{j}\right)^{2} \leq \sum_{i=1}^{n} \xi_{i} \sum_{j=1}^{n} p_{ij} z_{j}^{2}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \xi_{i} p_{ij} z_{j}^{2} = \sum_{j=1}^{n} \xi_{j} z_{j}^{2} = \|z\|_{\xi}^{2},$$

where the inequality follows from the convexity of the quadratic function, and the next to last equality follows from the defining property $\sum_{i=1}^{n} \xi_i p_{ij} =$ ξ_j of the steady-state probabilities.

• Using the lemma, the nonexpansiveness of Π , and the definition $T_{\mu}J = g + \alpha PJ$, we have

$$\|\Pi T_{\mu}J - \Pi T_{\mu}\bar{J}\|_{\xi} \le \|T_{\mu}J - T_{\mu}\bar{J}\|_{\xi} = \alpha \|P(J - \bar{J})\|_{\xi} \le \alpha \|J - \bar{J}\|_{\xi}$$

for all $J, \overline{J} \in \Re^n$. Hence ΠT_μ is a contraction of modulus α .

PROOF OF ERROR BOUND

• Let Φr^* be the fixed point of ΠT . We have

$$||J_{\mu} - \Phi r^*||_{\xi} \le \frac{1}{\sqrt{1 - \alpha^2}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}.$$

Proof: We have

$$\begin{aligned} \|J_{\mu} - \Phi r^*\|_{\xi}^2 &= \|J_{\mu} - \Pi J_{\mu}\|_{\xi}^2 + \|\Pi J_{\mu} - \Phi r^*\|_{\xi}^2 \\ &= \|J_{\mu} - \Pi J_{\mu}\|_{\xi}^2 + \|\Pi T J_{\mu} - \Pi T(\Phi r^*)\|_{\xi}^2 \\ &\leq \|J_{\mu} - \Pi J_{\mu}\|_{\xi}^2 + \alpha^2 \|J_{\mu} - \Phi r^*\|_{\xi}^2, \end{aligned}$$

where

- The first equality uses the Pythagorean Theorem
- The second equality holds because J_{μ} is the fixed point of T and Φr^* is the fixed point of ΠT
- The inequality uses the contraction property of ΠT .

Q.E.D.

MATRIX FORM OF PROJECTED EQUATION

• Its solution is the vector $J = \Phi r^*$, where r^* solves the problem

$$\min_{r \in \Re^s} \left\| \Phi r - (g + \alpha P \Phi r^*) \right\|_{\xi}^2.$$

• Setting to 0 the gradient with respect to r of this quadratic, we obtain

$$\Phi' \Xi \big(\Phi r^* - (g + \alpha P \Phi r^*) \big) = 0,$$

where Ξ is the diagonal matrix with the steadystate probabilities ξ_1, \ldots, ξ_n along the diagonal.

- This is just the orthogonality condition: The error $\Phi r^* (g + \alpha P \Phi r^*)$ is "orthogonal" to the subspace spanned by the columns of Φ .
- Equivalently,

$$Cr^* = d,$$

where

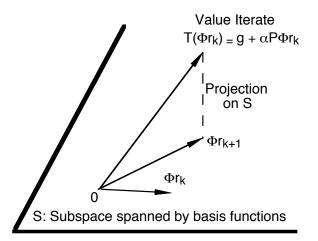
$$C = \Phi' \Xi (I - \alpha P) \Phi, \qquad d = \Phi' \Xi g.$$

PROJECTED EQUATION: SOLUTION METHODS

- Matrix inversion: $r^* = C^{-1}d$
- Projected Value Iteration (PVI) method:

$$\Phi r_{k+1} = \Pi T(\Phi r_k) = \Pi (g + \alpha P \Phi r_k)$$

Converges to r^* because ΠT is a contraction.



• PVI can be written as:

$$r_{k+1} = \arg\min_{r\in\Re^s} \left\|\Phi r - (g + \alpha P \Phi r_k)\right\|_{\xi}^2$$

By setting to 0 the gradient with respect to r,

$$\Phi' \Xi \big(\Phi r_{k+1} - (g + \alpha P \Phi r_k) \big) = 0,$$

which yields

$$r_{k+1} = r_k - (\Phi' \Xi \Phi)^{-1} (Cr_k - d)$$

SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approximations based on k samples

$$C_k \approx C, \qquad d_k \approx d$$

• Matrix inversion $r^* = C^{-1}d$ is approximated by

$$\hat{r}_k = C_k^{-1} d_k$$

This is the LSTD (Least Squares Temporal Differences) Method.

• PVI method $r_{k+1} = r_k - (\Phi' \Xi \Phi)^{-1} (Cr_k - d)$ is approximated by

$$r_{k+1} = r_k - G_k(C_k r_k - d_k)$$

where

$$G_k \approx (\Phi' \Xi \Phi)^{-1}$$

This is the LSPE (Least Squares Policy Evaluation) Method.

• Key fact: C_k , d_k , and G_k can be computed with low-dimensional linear algebra (of order s; the number of basis functions).

SIMULATION MECHANICS

• We generate an infinitely long trajectory $(i_0, i_1, ...)$ of the Markov chain, so states *i* and transitions (i, j) appear with long-term frequencies ξ_i and p_{ij} .

• After generating the transition (i_t, i_{t+1}) , we compute the row $\phi(i_t)'$ of Φ and the cost component $g(i_t, i_{t+1})$.

• We form

$$C_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \left(\phi(i_t) - \alpha \phi(i_{t+1}) \right)' \approx \Phi' \Xi (I - \alpha P) \Phi$$

$$d_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) g(i_t, i_{t+1}) \approx \Phi' \Xi g$$

Also in the case of LSPE

$$G_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \phi(i_t)' \approx \Phi' \Xi \Phi$$

• Convergence based on law of large numbers.

• C_k , d_k , and G_k can be formed incrementally. Also can be written using the formalism of temporal differences (this is just a matter of style)

OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approximations $C_k \approx C$ and $d_k \approx d$, we do a less accurate approximation, based on few simulation samples

• Evaluate (coarsely) current policy μ , then do a policy improvement

• This often leads to faster computation (as optimistic methods often do)

• Very complex behavior (see the subsequent discussion on oscillations)

• The matrix inversion/LSTD method has serious problems due to large simulation noise (because of limited sampling)

• LSPE tends to cope better because of its iterative nature

• A stepsize $\gamma \in (0, 1]$ in LSPE may be useful to damp the effect of simulation noise

$$r_{k+1} = r_k - \gamma G_k (C_k r_k - d_k)$$

MULTISTEP METHODS

• Introduce a multistep version of Bellman's equation $J = T^{(\lambda)}J$, where for $\lambda \in [0, 1)$,

$$T^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} T^{\ell+1}$$

Geometrically weighted sum of powers of T.

• Note that T^{ℓ} is a contraction with modulus α^{ℓ} , with respect to the weighted Euclidean norm $\|\cdot\|_{\xi}$, where ξ is the steady-state probability vector of the Markov chain.

• Hence $T^{(\lambda)}$ is a contraction with modulus

$$\alpha_{\lambda} = (1 - \lambda) \sum_{\ell=0}^{\infty} \alpha^{\ell+1} \lambda^{\ell} = \frac{\alpha(1 - \lambda)}{1 - \alpha\lambda}$$

Note that $\alpha_{\lambda} \to 0$ as $\lambda \to 1$

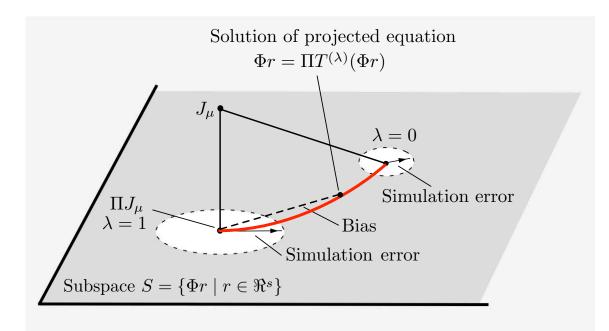
• T^t and $T^{(\lambda)}$ have the same fixed point J_{μ} and

$$||J_{\mu} - \Phi r_{\lambda}^{*}||_{\xi} \le \frac{1}{\sqrt{1 - \alpha_{\lambda}^{2}}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}$$

where Φr_{λ}^* is the fixed point of $\Pi T^{(\lambda)}$.

• The fixed point Φr_{λ}^* depends on λ .

BIAS-VARIANCE TRADEOFF



• Error bound $||J_{\mu} - \Phi r_{\lambda}^*||_{\xi} \leq \frac{1}{\sqrt{1 - \alpha_{\lambda}^2}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}$

• As $\lambda \uparrow 1$, we have $\alpha_{\lambda} \downarrow 0$, so error bound (and the quality of approximation) improves as $\lambda \uparrow 1$. In fact

$$\lim_{\lambda \uparrow 1} \Phi r_{\lambda}^* = \Pi J_{\mu}$$

• But the simulation noise in approximating

$$T^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} T^{\ell+1}$$

increases

• Choice of λ is usually based on trial and error

MULTISTEP PROJECTED EQ. METHODS

• The projected Bellman equation is

$$\Phi r = \Pi T^{(\lambda)}(\Phi r)$$

• In matrix form: $C^{(\lambda)}r = d^{(\lambda)}$, where

$$C^{(\lambda)} = \Phi' \Xi (I - \alpha P^{(\lambda)}) \Phi, \qquad d^{(\lambda)} = \Phi' \Xi g^{(\lambda)},$$

with

$$P^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \alpha^{\ell} \lambda^{\ell} P^{\ell+1}, \quad g^{(\lambda)} = \sum_{\ell=0}^{\infty} \alpha^{\ell} \lambda^{\ell} P^{\ell} g$$

• The LSTD (λ) method is

$$\left(C_k^{(\lambda)}\right)^{-1} d_k^{(\lambda)},$$

where $C_k^{(\lambda)}$ and $d_k^{(\lambda)}$ are simulation-based approximations of $C^{(\lambda)}$ and $d^{(\lambda)}$.

• The LSPE(λ) method is

$$r_{k+1} = r_k - \gamma G_k \left(C_k^{(\lambda)} r_k - d_k^{(\lambda)} \right)$$

where G_k is a simulation-based approx. to $(\Phi' \Xi \Phi)^{-1}$

• $TD(\lambda)$: An important simpler/slower iteration [similar to $LSPE(\lambda)$ with $G_k = I$ - see the text].

MORE ON MULTISTEP METHODS

• The simulation process to obtain $C_k^{(\lambda)}$ and $d_k^{(\lambda)}$ is similar to the case $\lambda = 0$ (single simulation trajectory i_0, i_1, \ldots more complex formulas)

$$C_k^{(\lambda)} = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \sum_{m=t}^k \alpha^{m-t} \lambda^{m-t} \big(\phi(i_m) - \alpha \phi(i_{m+1}) \big)',$$

$$d_k^{(\lambda)} = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \sum_{m=t}^k \alpha^{m-t} \lambda^{m-t} g_{i_m}$$

• In the context of approximate policy iteration, we can use optimistic versions (few samples between policy updates).

- Many different versions (see the text).
- Note the λ -tradeoffs:
 - As $\lambda \uparrow 1$, $C_k^{(\lambda)}$ and $d_k^{(\lambda)}$ contain more "simulation noise", so more samples are needed for a close approximation of r_{λ} (the solution of the projected equation)
 - The error bound $||J_{\mu} \Phi r_{\lambda}||_{\xi}$ becomes smaller
 - As $\lambda \uparrow 1, \Pi T^{(\lambda)}$ becomes a contraction for arbitrary projection norm

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.