
6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Review of approximation in value space

• Approximate VI and PI

• Projected Bellman equations

• Matrix form of the projected equation

• Simulation-based implementation

• LSTD and LSPE methods

• Optimistic versions

• Multistep projected Bellman equations

• Bias-variance tradeoff

1



DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim

{

N

E
∑

αkg
(

ik, µk(ik), ik+1

)

| i = i0
N→∞

k=0

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

n

(TJ)(i) = min
∑

pij(u)
(

g(i, u, j)+αJ(j) ,
∈U(i)

j=1

)

, i = 1, . . . , n
u

n

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n
j=1

∑

( )( ( ) )
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“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

n

J∗(i) = min
∑

pij(u)
(

g(i, u, j)+αJ∗(j) , i
u∈U(i)

j=1

)

∀

n

Jµ(i) =
∑

pij
(

µ(i) i,
=1

)(

g
(

µ(i), j
)

+ αJµ(j)
j

)

, ∀ i

• Optimality condition:

µ: optimal <==> T ∗
µJ = TJ∗

i.e.,

n

µ(i) ∈ arg min
u∈U(i)

∑

pij(u)
j=1

(

g(i, u, j)+αJ∗(j)
)

, ∀ i

3



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ,n

J∗(i) = lim (T kJ)(i), ∀ i = 1, . . . , n
k→∞

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

n

Jµk (i) =
∑

pij
(

µk(i)
)(

g
(

i, µk(i), j
)

+αJµk (j)
j=1

)

, i = 1, . . . ,

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

n

µk+1(i) ∈ arg min
u∈U(i)

∑

pij(u) i,

=1

(

g( u, j)+αJµk (j)
j

)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question

n

(even though it terminates finitely)
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APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i, r), where i is the current state and r = (r1, . . . , rm)
is a vector of “tunable” scalars weights.

• By adjusting r we can change the “shape” of J̃
so that it is close to the true optimal J∗.

• Any r ∈ ,s defines a (suboptimal) one-step
lookahead policy

n

µ̃(i) = arg min
∑

pij(u)
(

g(i, u, j)+αJ̃(j, r)
u∈U(i)

j=1

)

, ∀ i

• We will focus mostly on linear architectures

J̃(r) = Φr

where Φ is an n × s matrix whose columns are
viewed as basis functions

• Think n: HUGE, s: (Relatively) SMALL

• For J̃(r) = Φr, approximation in value space
means approximation of J∗ or Jµ within the sub-
space

S = Φr r s{ | ∈ , }
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APPROXIMATE VI

• Approximates sequentially Jk(i) = (T kJ0)(i),
k = 1, 2, . . ., with J̃k(i, rk)

• The starting function J0 is given (e.g., J0 ≡ 0)

• After a large enough numberN of steps, J̃N (i, rN )
is used as approximation J̃(i, r) to J∗(i)

• Fitted Value Iteration: A sequential “fit” to
produce J̃k+1 from J̃k, i.e., J̃k+1 ≈ T J̃k or (for a
single policy µ) J̃k+1 ≈ TµJ̃k

− For a “small” subset Sk of states i, compute

n

(T J̃k)(i) = min p
u∈U(i)

∑

ij(u)
j=1

(

g(i, u, j) + αJ̃k(j, r)

˜

)

− “Fit” the function Jk+1(i, rk+1) to the “small”
set of values (T J̃k)(i), i ∈ Sk

− Simulation can be used for “model-free” im-
plementation

• Error Bound: If the fit is uniformly accurate
within δ > 0 (i.e., maxi |J̃k+1(i)− T J̃k(i)| ≤ δ),

2αδ
lim sup max J̃k(i, rk)

i=1,...,n
− J∗(i) ≤

(1 α)2k→∞

( )

−
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AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states
1 and 2, and a single policy.

− Deterministic transitions: 1 → 2 and 2 → 2

− Transition costs ≡ 0, so J∗(1) = J∗(2) = 0.

• Consider approximate VI scheme that approxi-
mates cost functions in S =

{

(r, 2r) | r ∈ , with
1

a weighted least squares fit; here Φ =

}

(

2

)

• Given Jk = (rk, 2rk), we find Jk+1 = (rk+1, 2rk+1),
where for weights ξ1, ξ2 > 0, rk+1 is obtained as

2 2
rk+1 = argmin

[

ξ1
(

r−(TJk)(1) +ξ2 2r
r

−(TJk)(2)

• With straightforward calcula

)

tion

( )

]

rk+1 = αβrk, where β = 2(ξ1+2ξ2)/(ξ1+4ξ2) > 1

• So if α > 1/β, the sequence {rk} diverges and
so does {Jk}.

• Difficulty is that T is a contraction, butΠ T
(= least squares fit composed with T ) is not

• Norm mismatch problem
7



APPROXIMATE PI

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Evaluation of typical policy µ: Linear cost func-
tion approximation J̃µ(r) = Φr, where Φ is ful
rank n × s matrix with columns the basis func-
tions, and ith row denoted φ(i)′.

• Policy “improvement” to generate µ:
n

µ(i) = arg min p u, j) + (j)′ij(u) g(i, αφ r
u∈U(i)

∑

j=1

( )

• Error Bound: If

max |J̃µk(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .
i

The sequence {µk} satisfies

2αδ
lim supmax Jµk(i) J∗(i)

i 2

l

k→∞

(

−
)

≤
(1− α)
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POLICY EVALUATION

Let’s consider approximate evaluation of the
st of the current policy by using simulation.

− Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

− Indirect policy evaluation - solving the pro-
jected equation Φr = ΠTµ(Φr) where Π is
projection w/ respect to a suitable weighted
Euclidean norm

•
co

S: Subspace spanned by basis functions
0

ΠJµ

Projection
on S

S: Subspace spanned by basis functions

Tµ(Φr)

0

Φr = ΠTµ(Φr)

Projection
on S

Jµ

Direct Mehod: Projection of cost vector Jµ Indirect method: Solving a projected 
form of Bellman’s equation

• Recall that projection can be implemented by
simulation and least squares
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WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

‖J‖ξ =

√

√ n
√

√

∑

ξi
i=1

(

J(i)
)2
,

where ξ is a vector of positive weights ξ1, . . . , ξn.

• Let Π denote the projection operation onto

S = {Φr | r ∈ ,s}

with respect to this norm, i.e., for any J ∈ ,n,

ΠJ = Φr∗

where
r∗ = arg min

r∈'s
‖J − Φr‖2ξ
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PI WITH INDIRECT POLICY EVALUATION

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Given the current policy µ:

− We solve the projected Bellman’s equation

Φr = ΠTµ(Φr)

− We approximate the solution Jµ of Bellman’s
equation

J = TµJ

with the projected equation solution J̃µ(r)
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KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠTµ a
contraction, so ΠTµ has unique fixed point?

• Assuming ΠT ∗
µ has unique fixed point Φr , how

close is Φr∗ to Jµ?

• Assumption: The Markov chain corresponding
to µ has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

N
1

ξj = lim
∑

P (ik = j | i0 = i) > 0
N→∞ N

k=1

• Proposition: (Norm Matching Property)

(a) ΠTµ is contraction of modulus α with re-
spect to the weighted Euclidean norm ‖ · ‖ξ,
where ξ = (ξ1, . . . , ξn) is the steady-state
probability vector.

(b) The unique fixed point Φr∗ of ΠTµ satisfies

1
‖Jµ − Φr∗‖ξ ≤ √

1− α2
‖Jµ −ΠJµ‖ξ
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PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S
with weighted Euclidean norm ‖ · ‖ξ. For all J ∈
,n, J ∈ S, the Pythagorean Theorem holds:

‖J − J‖2ξ = ‖J −ΠJ‖2ξ + ‖ΠJ − J‖2ξ

Proof: Geometrically, (J −ΠJ) and ( ΠJ− J) are
orthogonal in the scaled geometry of the norm
‖ , where two vectors x, y ∈ ,n

‖ ·
ξ are orthogonal
if
∑n

i=1 ξixiyi = 0. Expand the quadratic in the
RHS below:

‖J − J‖2ξ = ‖(J −ΠJ) + (ΠJ− J)‖2ξ

• The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

‖ΠJ −ΠJ̄‖ξ ≤ ‖J − J̄‖ξ, for all J, J̄ ∈ ,n.

To see this, note that

∥

Π(J − J)
∥2 ≤

∥ 2 2
Π(J − J)

ξ

∥

+
ξ

∥

(I −Π)(J − J)
∥

ξ

= J J 2
ξ

∥ ∥ ∥ ∥ ∥ ∥

‖ − ‖
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PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of µ,

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ ,n

Proof: Let pij be the components of P . For all
z ∈ ,n, we have

n n

‖Pz‖2ξ =
∑

ξi

 2
n n



∑

pijz

n

∑

2
j

i=1 =1



 ≤
∑

ξi pijzj
j i=1 j=1

n n

=
∑

j=1

∑

ξipijz2j =
i=1

∑

ξjz2j =
j=1

‖z‖2ξ ,

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property

∑n
i=1 ξipij =

ξj of the steady-state probabilities.

• Using the lemma, the nonexpansiveness of Π,
and the definition TµJ = g + αPJ , we have

‖ΠTµJ−ΠTµJ̄‖ξ ≤ ‖TµJ−TµJ̄‖ξ = α‖P (J−J̄)‖ξ ≤ α‖J−J̄‖ξ

for all J, J̄ ∈ ,n. Hence ΠTµ is a contraction of
modulus α.
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PROOF OF ERROR BOUND

• LetΦ r∗ be the fixed point of ΠT . We have

1
‖J ∗

µ − Φr ‖ξ ≤ √ ‖J J
−

µ −Π µ‖ξ.
1 α2

Proof: We have

‖ 2
J ∗ 2 2 ∗
µ − Φr ‖ξ = ‖Jµ −ΠJµ‖ξ +

∥

ΠJµ − Φr

Jµ

∥

ξ

= ‖Jµ −Π ‖ 22
ξ +

∥ ∥

∥

∥ΠTJµ −ΠT (Φr∗)
ξ

≤ ‖Jµ −ΠJµ‖2ξ + α2‖Jµ − Φr∗‖2ξ ,

∥

∥

where

− The first equality uses the Pythagorean The-
orem

− The second equality holds because Jµ is the
fixed point of T and Φr∗ is the fixed point
of ΠT

− The inequality uses the contraction property
of ΠT .

Q.E.D.
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MATRIX FORM OF PROJECTED EQUATION

• Its solution is the vector J = Φr∗, where r∗

solves the problem

2
min

∥

∥Φr − (g + αPΦr∗)
r∈'s

∥

∥ .
ξ

• Setting to 0 the gradient with respect to r of
this quadratic, we obtain

Φ′Ξ
(

Φr∗ − (g + αPΦr∗) = 0,

where Ξ is the diagonal matrix wi

)

th the steady-
state probabilities ξ1, . . . , ξn along the diagonal.

• This is just the orthogonality condition: The
error Φr∗ − (g + αPΦr∗) is “orthogonal” to the
subspace spanned by the columns of Φ.

• Equivalently,
Cr∗ = d,

where

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg.
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PROJECTED EQUATION: SOLUTION METHODS

• Matrix inversion: r∗ = C−1d

• Projected Value Iteration (PVI) method:

Φrk+1 = ΠT (Φrk) = Π(g+αPΦrk)

Converges to r∗ because ΠT is a contraction.

S: Subspace spanned by basis functions

Φrk

T(Φrk) = g + αPΦrk

0

Φrk+1

Value Iterate

Projection
on S

• PVI can be written as:

rk+1 = arg min
∥ 2
∥Φr (g + αPΦrk) ξr∈'s

−
∥

By setting to 0 the gradient with respect

∥

to r,

Φ′Ξ Φrk+1 − (g + αPΦrk) = 0,

which yields

( )

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d)
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SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck ≈ C, dk ≈ d

• Matrix inversion r∗ = C−1d is approximated
by

r̂k = C−1
k dk

This is the LSTD (Least Squares Temporal Dif-
ferences) Method.

• PVI method r ′ −1
k+1 = rk − (Φ ΞΦ) (Crk − d) is

approximated by

rk+1 = rk −Gk(Ckrk − dk)

where
G ′

k ≈ (Φ ΞΦ)−1

This is the LSPE (Least Squares Policy Evalua-
tion) Method.

• Key fact: Ck, dk, and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).
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SIMULATION MECHANICS

• We generate an infinitely long trajectory (i0, i1, . . .)
of the Markov chain, so states i and transitions
(i, j) appear with long-term frequencies ξi and pij .

• After generating the transition (it, it+1), we
compute the row φ(i )′t of Φ and the cost com-
ponent g(it, it+1).

• We form

k
1

Ck =
∑

′
φ(i (i ′

t)
(

φ(it)−αφ t+1) ≈
+ 1

=0

)

Φ Ξ(I−αP )Φ
k

t

k
1

dk =
∑

φ(it)g(it, it+1)
k + 1

t=0

≈ Φ′Ξg

Also in the case of LSPE

k
1

Gk =
∑

φ(i t)′t)φ(i ≈ Φ′ΞΦ
k + 1

t=0

• Convergence based on law of large numbers.

• Ck, dk, and Gk can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)
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OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approxima-
tions Ck ≈ C and dk ≈ d, we do a less accurate
approximation, based on few simulation samples

• Evaluate (coarsely) current policy µ, then do a
policy improvement

• This often leads to faster computation (as op-
timistic methods often do)

• Very complex behavior (see the subsequent dis-
cussion on oscillations)

• The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling)

• LSPE tends to cope better because of its itera-
tive nature

• A stepsize γ ∈ (0, 1] in LSPE may be useful to
damp the effect of simulation noise

rk+1 = rk − γGk(Ckrk − dk)
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MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa-
tion J = T (λ)J , where for λ [0, 1),

∞

∈

T (λ) = (1− λ) λ"T "+1

"=0

Geometrically weighted sum

∑

of powers of T .

• Note that T " is a contraction with modulus
α", with respect to the weighted Euclidean norm
‖·‖ξ, where ξ is the steady-state probability vector
of the Markov chain.

• Hence T (λ) is a contraction with modulus

∞
α(1 λ)

αλ = (1− λ)
∑

α"+1λ" =
−

1
"=0

− αλ

Note that αλ → 0 as λ → 1

• T t and T (λ) have the same fixed point Jµ and

‖Jµ − Φr∗
1

λ‖ξ ≤ √ Jµ
1 α2

‖Jµ −Π
λ

‖
−

ξ

where Φr∗ is the fixed point of ΠT (λ)
λ .

The fixed point Φr∗λ depends on λ.•
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BIAS-VARIANCE TRADEOFF

Subspace S = {Φr | r ∈ "s}

Jµ

Simulation error
ΠJµ

Bias

λ = 0

λ = 1

Solution of projected equation

Simulation error

Φr = ΠT (λ)(Φr)

Set

Slope

Simulation error

Simulation error

)

0

. Φ

Solution of

∗

• Error bound ‖Jµ−Φr∗‖ξ ≤ √ 1
2
‖Jµ µλ 1−α

λ

−ΠJ ‖ξ

• As λ ↑ 1, we have αλ ↓ 0, so error bound (and
the quality of approximation) improves as λ ↑ 1.
In fact

limΦr∗λ = ΠJµ
λ↑1

• But the simulation noise in approximating
∞

T (λ) = (1− λ) λ"T "+1

"=0

increases

∑

Choice of λ is usually based on trial and error•
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MULTISTEP PROJECTED EQ. METHODS

• The projected Bellman equation is

Φr = ΠT (λ)(Φr)

• In matrix form: C(λ)r = d(λ), where

C(λ) = Φ′Ξ
(

I − αP (λ)
)

Φ, d(λ) = Φ′Ξg(λ),

with
∞ ∞

P (λ) = (1− λ)
∑

α"λ"P "+1, g(λ) =
"=0

∑

α"λ"P "g
"=0

• The LSTD(λ) method is
(C λ) −1 (
k d λ)

k ,

( ) ( )where C λ and d λ
k k

(

are

)

simulation-based approx-
imations of C(λ) and d(λ).

• The LSPE(λ) method is

− (λ) − (λ)rk+1 = rk γGk Ck rk dk

whereGk is a simulation-b

(

ased approx. to

)

(Φ′ΞΦ)−1

• TD(λ): An important simpler/slower iteration
[similar to LSPE(λ) with Gk = I - see the text].
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MORE ON MULTISTEP METHODS

• ( ) ( )The simulation process to obtain C λ
k and d λ

k

is similar to the case λ = 0 (single simulation tra-
jectory i0, i1, . . . more complex formulas)

k k
( ) 1

C λ
k =

k + 1

∑

φ(it)
∑

αm−tλm−t
(

φ(im)−αφ(im+1)
t=0 m=t

)

k k
(d λ) 1
k =

∑

φ(it)
∑

αm−tλm−tgi
k + 1 m

t=0 m=t

• In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

• Many different versions (see the text).

• Note the λ-tradeoffs:

− As λ ↑ (1, C λ) (
k and d λ)

k contain more “sim-
ulation noise”, so more samples are needed
for a close approximation of rλ (the solution
of the projected equation)

− The error bound ‖Jµ−Φrλ‖ξ becomes smaller

− As λ ↑ 1,Π T (λ) becomes a contraction for
arbitrary projection norm

′
,
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