
APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Review of discounted DP

• Introduction to approximate DP

• Approximation architectures

• Simulation-based approximate policy iteration

• Approximate policy evaluation

• Some general issues about approximation and
simulation

1

REVIEW

2

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

with α < 1, and for someM , we have |g(x, u, w)| ≤

M for all (x, u, w)

• Shorthand notation for DP mappings (operate

on functions of state to produce other functions)

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x
u∈U(x) w

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ

• For any stationary policy µ

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x
w

3

MDP - TRANSITION PROBABILITY NOTATION

• We will mostly assume the system is an n-state
(controlled) Markov chain

• We will often switch to Markov chain notation

− States i = 1, . . . , n (instead of x)

− Transition probabilities pik ik+1 (uk) [instead

of xk+1 = f(xk, uk, wk)]

− Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)]

− Cost functions J = J(1), . . . , J(n) (vec
tors in ℜn)

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i0 = i
N→∞ ik

k=1,2,... k=0

• Shorthand notation for DP mappings

n

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n,
u∈U(i)

j=1

n

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n

j=1 4

(

)
)

{

N−1
∑

k=0

αkg
(

i
)

}

n
∑

j=1

pij(u)
(

(j)
)

,

n
∑

pij
(

µ(i)
)(

g
()

+αJ(j)
)

“SHORTHAND” THEORY – A SUMMARY

•	 Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or

n

J∗(i) = min pij(u) g(i, u, j)+αJ∗(j) , ∀ i
u∈U(i)

j=1

n

Jµ(i) = pij	 µ(i) g i, µ(i), j + αJµ(j) , ∀ i
j=1

• Optimality	 condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

n

µ(i) ∈ arg min pij(u) g(i, u, j)+αJ∗(j) , ∀ i
u∈U(i)

j=1

5

∑

()

∑

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

∑

()

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ℜn

J∗(i) = lim (T kJ)(i), ∀ i = 1, . . . , n
k→∞

• Policy iteration: Given µk

− Policy evaluation: Find J by solving kµ

n

Jµk (i) = pij µ
k(i) g i, µ

k(i), j +αJµk (j) , i = 1, . . . , n

j=1

or J = T k J kkµ µ µ

− Policy improvement: Let µk+1 be such that

n

µ
k+1(i) ∈ arg min pij(u) g(i, u, j)+αJ k (j) , ∀ iµ

u∈U(i)
j=1

or T k+1 J = TJ kkµ µ µ

• Policy evaluation is equivalent to solving an
n × n linear system of equations

• For large n, exact PI is out of the question. We
use instead optimistic PI (policy evaluation with
a few VIs) 6

∑

(

µ
k()
)(

g
(

(i),
)

(j)
)

n
∑

(

g(i, u, j)+αJµk (j)
)

APPROXIMATE DP

7

GENERAL ORIENTATION TO ADP

• ADP (late 80s - present) is a breakthrough

methodology that allows the application of DP to

problems with many or infinite number of states.

• Other names for ADP are:

− “reinforcement learning” (RL).

− “neuro-dynamic programming” (NDP).

− “adaptive dynamic programming” (ADP).

• We will mainly adopt an n-state discounted

model (the easiest case - but think of HUGE n).

• Extensions to other DP models (continuous

space, continuous-time, not discounted) are possi
ble (but more quirky). We will set aside for later.

• There are many approaches:

− Problem approximation

− Simulation-based approaches (we will focus
on these)

• Simulation-based methods are of three types:

− Rollout (we will not discuss further)

− Approximation in value space

− Approximation in policy space
8

WHY DO WE USE SIMULATION?

• One reason: Computational complexity advan
tage in computing sums/expectations involving a
very large number of terms

− Any sum
n

ai
i=1

can be written as an expected value:

n n � �
ai ai

ai = ξi = Eξ ,
ξi ξi

i=1 i=1

where ξ is any prob. distribution over {1, . . . , n}

− It can be approximated by generating many
samples {i1, . . . , ik} from {1, . . . , n}, accord
ing to distribution ξ, and Monte Carlo aver
aging:

n � � k
ai 1 ait ai = Eξ ≈
ξi k ξiti=1 t=1

• Simulation is also convenient when an analytical
model of the system is unavailable, but a simula
tion/computer model is possible.

9

∑

a

∑ ∑

∑ ∑

APPROXIMATION IN VALUE AND

POLICY SPACE

10

APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r) where i is the current state and r = (r1, . . . , rm)
is a vector of “tunable” scalars weights

• Use J̃ in place of J∗ or Jµ in various algorithms
and computations

• Role of r: By adjusting r we can change the
“shape” of J̃ so that it is “close” to J∗ or Jµ

• Two key issues:

− The choice of parametric class J̃(i; r) (the
approximation architecture)

− Method for tuning the weights (“training”
the architecture)

• Success depends strongly on how these issues

are handled ... also on insight about the problem

• A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model)

• We will focus on simulation, but this is not the
only possibility

• We may also use parametric approximation for
Q-factors or cost function differences

11

APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(i; r) on r]

• Linear architectures are easier to train, but non
linear ones (e.g., neural networks) are richer

• Computer chess example:

− Think of board position as state and move
as control

− Uses a feature-based position evaluator that
assigns a score (or approximate Q-factor) to
each position/move

Feature
Extraction

Weighting
of Features

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

Score

• Relatively few special features and weights, and
multistep lookahead

12

Approximator
i Mapping Feature Vector

Approximator ()Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)

LINEAR APPROXIMATION ARCHITECTURES

• Often, the features encode much of the nonlin
earity inherent in the cost function approximated

• Then the approximation may be quite accurate
without a complicated architecture (as an extreme
example, the ideal feature is the true cost func
tion)

• With well-chosen features, we can use a linear
architecture: J̃(i; r) = φ(i)′ r, i = 1, . . . , n, or

s

J̃(r) = Φr = Φjrj
j=1

Φ: the matrix whose rows are φ(i)′ , i = 1, . . . , n,
Φj is the jth column of Φ

State i Feature Extraction
Mapping Mapping

Feature Vector φ(i) Linear
Linear Cost

Approximator φ(i)′ r

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}

spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, etc

13

∑

Approximator
i Mapping Feature Vector

Approximator ()Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)

ILLUSTRATIONS: POLYNOMIAL TYPE

• Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be i =
(i1, . . . , iq) (i.e., have q “dimensions”) and define

φ0(i) = 1, φk(i) = ik, φkm(i) = ikim, k,m = 1, . . . , q

Linear approximation architecture:

q q q

J̃(i; r) = r0 + rkik + rkmikim,

k=1 k=1 m=k

where r has components r0, rk, and rkm.

• Interpolation: A subset I of special/representative
states is selected, and the parameter vector r has
one component ri per state i ∈ I. The approxi
mating function is

J̃(i; r) = ri, i ∈ I,

J̃(i; r) = interpolation using the values at i ∈ I, i /∈ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.

14

∑ ∑∑

A DOMAIN SPECIFIC EXAMPLE

• Tetris game (used as testbed in competitions)

......

TERMINATION

• J∗(i): optimal score starting from position i

• Number of states > 2200 (for 10× 20 board)

• Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)

15

Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r)

SteadyState Distribution
Cost ()

Approximate Policy Evaluation

Approximate Policy Evaluation

Initial state () Time

Controlled System Cost per Stage Vector
tion Matrix ()

Approximate Policy

Evaluation

Policy Improvement

Approximate Policy

Evaluation

Policy ImprovementGenerate “Imp

APPROX. PI - OPTION TO APPROX. Jµ OR Qµ

• Use simulation to approximate the cost Jµ of
the current policy µ

• Generate “improved” policy µ by minimizing in
(approx.) Bellman equation

Generate “Improved” Policy µ

Initial Policy

J̃µ(i, r)
Evaluate Approximate Cost

• Altenatively approximate the Q-factors of µ

roved” Policy µ

Evaluate Approximate QFactors

µ(i) = arg minu∈U (i) Q̃µ(i, u, r)

Initial Policy

Q̃µ(i, u, r)

16

� �

APPROXIMATING J∗ OR Q∗

• Approximation of the optimal cost function J∗

− Q-Learning: Use a simulation algorithm to
approximate the Q-factors

n

Q∗(i, u) = g(i, u) + α pij(u)J∗(j);
j=1

and the optimal costs

J∗(i) = min Q∗(i, u)
u∈U(i)

− Bellman Error approach: Find r to

2
min Ei J̃(i; r)− (T J̃)(i; r)
r

where Ei{·} is taken with respect to some
distribution over the states

− Approximate Linear Programming (we will
not discuss here)

• Q-learning can also be used with approxima
tions

• Q-learning and Bellman error approach can also
be used for policy evaluation

17

∑

()

APPROXIMATION IN POLICY SPACE

•	 A brief discussion; we will return to it later.

• Use parametrization µ(i; r) of policies with a
vector r = (r1, . . . , rs). Examples:

− Polynomial, e.g., µ(i; r) = r1 + r2 · i+ r3 · i2

− Linear feature-based

µ(i; r) = φ1(i) · r1 + φ2(i) · r2

•	 Optimize the cost over r. For example:

− Each value of r defines a stationary policy,
with cost starting at state i denoted by J̃(i; r).

− Let (p1, . . . , pn) be some probability distri
bution over the states, and minimize over r

n

˜piJ(i; r)
i=1

−	 Use a random search, gradient, or other method

• A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture Ĵ , i.e.,

n

µ(i; r) ∈ arg min pij(u) g(i, u, j) + αĴ(j; r)
u∈U(i)

j=1
18

∑

∑

APPROXIMATE POLICY EVALUATION

METHODS

19

Set

=

Direct Method: Projection of cost vector Π

µ

cost vector

() () ()Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

DIRECT POLICY EVALUATION

• Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

• Amounts to projection of Jµ onto the approxi
mation subspace

Jµ

ΠJµ
0

=

Direct Method: Projection of
cost vector Jµ

• Solution by least squares methods

• Regular and optimistic policy iteration

• Nonlinear approximation architectures may also
be used

20

DIRECT EVALUATION BY SIMULATION

• Projection by Monte Carlo Simulation: Com
pute the projection ΠJµ of Jµ on subspace S =
{Φr | r ∈ ℜs}, with respect to a weighted Eu
clidean norm I · Iξ

• Equivalently, find Φr ∗, where
n

r ∗ = arg min IΦr−JµI2 = arg min ξi φ(i)′ r−Jµ(i)ξ
r∈ℜs r∈ℜs

i=1
• Setting to 0 the gradient at r ∗ ,

 −1n n

r ∗ = ξiφ(i)φ(i)′ ξiφ(i)Jµ(i)

i=1 i=1

• Generate samples (i1, Jµ(i1)), . . . , (ik, Jµ(ik))
using distribution ξ

• Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

 −1
k k

r̂k = φ(it)φ(it)′ φ(it)Jµ(it)

t=1 t=1

• Equivalent least squares alternative calculation:

k
2

r̂k = arg min φ(it)′ r − Jµ(it)

r∈ℜs

t=1
21

2 ∑

()

(

∑

)

∑

(

k
∑

t=1

)

∑

∑

()

Set

=

Set

=

Direct Method: Projection of cost vector Π

µ

form of Bellman’s equation

Projection onIndirect Method: Solving a projected

cost vector

() () ()Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

0

Tµ(Φr)

Φr = ΠTµ(Φr)

INDIRECT POLICY EVALUATION

• An example: Galerkin approximation

• Solve the projected equation Φr = ΠTµ(Φr)
where Π is projection w/ respect to a suitable
weighted Euclidean norm

Jµ

ΠJµ
0

= Subspace S = {Φr | r ∈ ℜs}

Direct Method: Projection of Indirect Method: Solving a projected
cost vector Jµ form of Bellman’s equation

• Solution methods that use simulation (to man
age the calculation of Π)

− TD(λ): Stochastic iterative algorithm for solv
ing Φr = ΠTµ(Φr)

− LSTD(λ): Solves a simulation-based approx
imation w/ a standard solver

− LSPE(λ): A simulation-based form of pro
jected value iteration; essentially

Φrk+1 = ΠTµ(Φrk) + simulation noise

22

BELLMAN EQUATION ERROR METHODS

• Another example of indirect approximate policy

evaluation:

min IΦr − Tµ(Φr)I2 (∗)ξ r

where I · Iξ is Euclidean norm, weighted with re
spect to some distribution ξ

• It is closely related to the projected equation/Galerkin
approach (with a special choice of projection norm)

• Several ways to implement projected equation

and Bellman error methods by simulation. They

involve:

− Generating many random samples of states
ik using the distribution ξ

− Generating many samples of transitions (ik, jk)
using the policy µ

− Form a simulation-based approximation of
the optimality condition for projection prob
lem or problem (*) (use sample averages in
place of inner products)

− Solve the Monte-Carlo approximation of the
optimality condition

• Issues for indirect methods: How to generate

the samples? How to calculate r ∗ efficiently?

23

2 3 4 5 6 7 8 91 3 4 5 6 7 8 91 2 4 5 6 7 8 9

1 2 3 5 6 7 8 91 2 3 4 6 7 8 91 2 3 4 5 7 8 9

1 2 3 4 5 6 8 91 2 3 4 5 6 7 91 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

ANOTHER INDIRECT METHOD: AGGREGATION

• A first idea: Group similar states together into
“aggregate states” x1, . . . , xs; assign a common
cost value ri to each group xi.

• Solve an “aggregate” DP problem, involving the
aggregate states, to obtain r = (r1, . . . , rs). This
is called hard aggregation

1 2 3

4 5 6

7 8 9

x1 x2

x3 x4

Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• More general/mathematical view: Solve

Φr = ΦDTµ(Φr)

where the rows of D and Φ are prob. distributions
(e.g., D and Φ “aggregate” rows and columns of
the linear system J = TµJ)

• Compare with projected equation Φr = ΠTµ(Φr).
Note: ΦD is a projection in some interesting cases

24

2 3 4 5 6 7 8 91 3 4 5 6 7 8 91 2 4 5 6 7 8 9

1 2 3 5 6 7 8 91 2 3 4 6 7 8 91 2 3 4 5 7 8 9

1 2 3 4 5 6 8 91 2 3 4 5 6 7 91 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

according to with cost

S

, = 1

),),

System States Aggregate States

Original Aggregate States

|

Original System States

Probabilities

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

Aggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

AGGREGATION AS PROBLEM APPROXIMATION

dxi φjy Q

Original
System States

p̂xy(u) =
n �

i=1

dxi

n �

j=1

pij (u)φjy ,

Disaggregation
Probabilities

Aggregation
Probabilities

ĝ(x, u) =
n �

i=1

dxi

n �

j=1

pij (u)g(i, u, j)

, g(i, u, j)

• Aggregation can be viewed as a systematic
approach for problem approximation. Main ele
ments:

− Solve (exactly or approximately) the “ag
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

−	 Use the optimal cost of the aggregate prob
lem to approximate the optimal cost of the
original problem

• Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa
tion approach 25

according to pij(u), with cost

S

, = 1

),),

System States Aggregate States

{

Original Aggregate States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

, g(i, u, j)
Matrix Matrix

{

|

Original System States Aggregate States

{

|

Original System States

, j = 1i

), x), y

APPROXIMATE POLICY ITERATION

ISSUES

26

THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using an
approximation architecture such that

max |J̃(i, rk)− J k (i)| ≤ δ, k = 0, 1, . . . µ
i

• If policy improvement is also approximate,

max |(T k+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ǫ, k = 0, 1, . . . µ
i

• Error bound: The sequence {µk} generated by
approximate policy iteration satisfies

ǫ+ 2αδ
lim sup max J k (i)− J∗(i) ≤µ
k→∞ i (1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
J oscillate within a neighborhood of J∗

k .µ

• Oscillations are quite unpredictable.

− Some bad examples of oscillations have been
constructed.

− In practice oscillations between policies is
probably not the major concern.

27

THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate cost
samples using that policy - this biases the simula
tion by underrepresenting states that are unlikely
to occur under µ

• Cost-to-go estimates of underrepresented states
may be highly inaccurate

• This seriously impacts the improved policy µ

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela
tively small” (e.g., a deterministic system)

• Some remedies:

− Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

− Occasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy µ

− Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen
erate the transition sequence, the other is
used to generate the state sequence).

28

APPROXIMATING Q-FACTORS

• Given J̃(i; r), policy improvement requires a
model [knowledge of pij(u) for all controls u ∈
U(i)]

• Model-free alternative: Approximate Q-factors

n

Q̃(i, u; r) ≈ pij(u) g(i, u, j) + αJµ(j)
j=1

and use for policy improvement the minimization

˜µ(i) ∈ arg min Q(i, u; r)

u∈U(i)

• r is an adjustable parameter vector and Q̃(i, u; r)
is a parametric architecture, such as

s

Q̃(i, u; r) = rmφm(i, u)
m=1

• We can adapt any of the cost approximation

approaches, e.g., projected equations, aggregation

• Use the Markov chain with states (i, u), so
pij(µ(i)) is the transition prob. to (j, µ(i)), 0 to
other (j, u′)

• Major concern: Acutely diminished exploration

29

∑

∑

SOME GENERAL ISSUES

30

STOCHASTIC ALGORITHMS: GENERALITIES

• Consider solution of a linear equation x = b +
Ax by using m simulation samples b + wk and
A+Wk, k = 1, . . . ,m, where wk,Wk are random,
e.g., “simulation noise”

• Think of x = b + Ax as approximate policy
evaluation (projected or aggregation equations)

• Stoch. approx. (SA) approach: For k = 1, . . . ,m

xk+1 = (1− γk)xk + γk (b+ wk) + (A+ Wk)xk

• Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

m m
1 1

bm = (b+ wk), Am = (A+ Wk)
m m

k=1 k=1

Then solve x = bm + Amx by matrix inversion

xm = (1−Am)−1bm

or iteratively

• TD(λ) and Q-learning are SA methods

• LSTD(λ) and LSPE(λ) are MCE methods

31

(

∑ ∑

COSTS OR COST DIFFERENCES?

• Consider the exact policy improvement process.
To compare two controls u and u ′ at x, we need

E g(x, u, w)− g(x, u ′ , w) + α Jµ(x)− Jµ(x
′)

′ where x = f(x, u, w) and x = f(x, u ′ , w)

• Approximate Jµ(x) or

Dµ(x, x ′) = Jµ(x)− Jµ(x ′)?

• Approximating Dµ(x, x
′) avoids “noise differ

encing”. This can make a big difference

• Important point: Dµ satisfies a Bellman equa
tion for a system with “state” (x, x ′)

Dµ(x, x ′) = E Gµ(x, x ′ , w) + αDµ(x, x
′)

′ where x = f x, µ(x), w , x = f x′ , µ(x ′), w and

Gµ(x, x ′ , w) = g x, µ(x), w − g x ′ , µ(x ′), w

• Dµ can be “learned” by the standard methods
(TD, LSTD, LSPE, Bellman error, aggregation,
etc). This is known as differential training.

32

)}

)
{ }

(

x, µ(x), w
)

, x′ = f
(

x′, µ(x′), w
)

and

) = g
(

x, µ(x), w
)

− g
(

x′, µ(x′), w
)

AN EXAMPLE (FROM THE NDP TEXT)

• System and cost per stage:

xk+1 = xk + δuk, g(x, u) = δ(x2 + u2)

δ > 0 is very small; think of discretization of

continuous-time problem involving dx(t)/dt = u(t)

• Consider policy µ(x) = −2x. Its cost function
is

5x2
Jµ(x) = (1 + δ) +O(δ2)

4

and its Q-factor is

5x2 9x2 5
Qµ(x, u) = + δ + u2 + xu + O(δ2)

4 4 2

• The important part for policy improvement is

δ u2 +
5
xu

2

When Jµ(x) [or Qµ(x, u)] is approximated by
J̃µ(x; r) [or by Q̃µ(x, u; r)], it will be dominated

by 5x
2
and will be “lost” 4

33

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

