
APPROXIMATE DYNAMIC PROGRAMMING
 

LECTURE 3
 

LECTURE OUTLINE
 

• Review of discounted DP 

• Introduction to approximate DP 

• Approximation architectures 

• Simulation-based approximate policy iteration
 

• Approximate policy evaluation 

• Some general issues about approximation and 
simulation 
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DISCOUNTED PROBLEMS/BOUNDED COST
 

• Stationary system with arbitrary state space 

xk+1 = f(xk, uk, wk), k = 0, 1, . . . 

• Cost of a policy π = {µ0, µ1, . . .} 

  

N−1
 

  

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk 

k=0,1,... k=0 

with α < 1, and for someM , we have |g(x, u, w)| ≤
 
M for all (x, u, w) 

• Shorthand notation for DP mappings (operate
 
on functions of state to produce other functions)
 

    

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x 
u∈U(x) w

TJ is the optimal cost function for the one-stage 
problem with stage cost g and terminal cost αJ 

• For any stationary policy µ 

      

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x 
w
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MDP - TRANSITION PROBABILITY NOTATION
 

• We will mostly assume the system is an n-state 
(controlled) Markov chain 

• We will often switch to Markov chain notation 

− States i = 1, . . . , n (instead of x) 

− Transition probabilities pik ik+1 (uk) [instead
 
of xk+1 = f(xk, uk, wk)]
 

− Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)] 

− Cost functions J = J(1), . . . , J(n) (vec
tors in ℜn) 

• Cost of a policy π = {µ0, µ1, . . .} 

N−1 

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i0 = i 
N→∞ ik 

k=1,2,... k=0 

• Shorthand notation for DP mappings 

n 

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n, 
u∈U(i)
 

j=1
 

n 

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n 

j=1 4
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“SHORTHAND” THEORY – A SUMMARY
 

•	 Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or 

n 

J∗(i) = min pij(u) g(i, u, j)+αJ∗(j) , ∀ i 
u∈U(i) 

j=1
 

n
 

Jµ(i) = pij	 µ(i) g i, µ(i), j + αJµ(j) , ∀ i 
j=1 

• Optimality	 condition: 

µ: optimal <==> TµJ∗ = TJ∗ 

i.e., 

n 

µ(i) ∈ arg min pij(u) g(i, u, j)+αJ∗(j) , ∀ i 
u∈U(i) 

j=1 
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THE TWO MAIN ALGORITHMS: VI AND PI
 

• Value iteration: For any J ∈ ℜn 

J∗(i) = lim (T kJ)(i), ∀ i = 1, . . . , n 
k→∞ 

• Policy iteration: Given µk 

− Policy evaluation: Find J by solving kµ

n 

Jµk (i) = pij µ 
k(i) g i, µ

k(i), j +αJµk (j) , i = 1, . . . , n 

j=1 

or J = T k J kkµ µ µ

− Policy improvement: Let µk+1 be such that 

n 

µ 
k+1(i) ∈ arg min pij(u) g(i, u, j)+αJ k (j) , ∀ iµ

u∈U(i) 
j=1 

or T k+1 J = TJ kkµ µ µ

• Policy evaluation is equivalent to solving an 
n × n linear system of equations 

• For large n, exact PI is out of the question. We 
use instead optimistic PI (policy evaluation with 
a few VIs) 6

∑

(

µ
k( )
)(

g
(

(i),
)

(j)
)

n
∑

(

g(i, u, j)+αJµk (j)
)



APPROXIMATE DP
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GENERAL ORIENTATION TO ADP
 

• ADP (late 80s - present) is a breakthrough
 
methodology that allows the application of DP to
 
problems with many or infinite number of states.
 

• Other names for ADP are: 

− “reinforcement learning” (RL). 

− “neuro-dynamic programming” (NDP). 

− “adaptive dynamic programming” (ADP). 

• We will mainly adopt an n-state discounted
 
model (the easiest case - but think of HUGE n).
 

• Extensions to other DP models (continuous
 
space, continuous-time, not discounted) are possi
ble (but more quirky). We will set aside for later.
 

• There are many approaches: 

− Problem approximation 

− Simulation-based approaches (we will focus 
on these) 

• Simulation-based methods are of three types: 

− Rollout (we will not discuss further) 

− Approximation in value space 

− Approximation in policy space 
8



 

  

  

WHY DO WE USE SIMULATION?
 

• One reason: Computational complexity advan
tage in computing sums/expectations involving a 
very large number of terms 

− Any sum 
n 

ai 
i=1 

can be written as an expected value:
 

n n � � 
ai ai 

ai = ξi = Eξ ,
ξi ξi

i=1 i=1 

where ξ is any prob. distribution over {1, . . . , n} 

− It can be approximated by generating many 
samples {i1, . . . , ik} from {1, . . . , n}, accord
ing to distribution ξ, and Monte Carlo aver
aging: 

n � � k 
ai 1 ait ai = Eξ ≈ 
ξi k ξiti=1 t=1 

• Simulation is also convenient when an analytical 
model of the system is unavailable, but a simula
tion/computer model is possible. 
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APPROXIMATION IN VALUE AND
 

POLICY SPACE
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APPROXIMATION IN VALUE SPACE
 

• Approximate J∗ or Jµ from a parametric class 
J̃(i; r) where i is the current state and r = (r1, . . . , rm) 
is a vector of “tunable” scalars weights 

• Use J̃ in place of J∗ or Jµ in various algorithms 
and computations 

• Role of r: By adjusting r we can change the 
“shape” of J̃ so that it is “close” to J∗ or Jµ 

• Two key issues: 

− The choice of parametric class J̃(i; r) (the 
approximation architecture) 

− Method for tuning the weights (“training” 
the architecture) 

• Success depends strongly on how these issues
 
are handled ... also on insight about the problem
 

• A simulator may be used, particularly when 
there is no mathematical model of the system (but 
there is a computer model) 

• We will focus on simulation, but this is not the 
only possibility 

• We may also use parametric approximation for 
Q-factors or cost function differences 
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APPROXIMATION ARCHITECTURES
 

• Divided in linear and nonlinear [i.e., linear or 
nonlinear dependence of J̃(i; r) on r] 

• Linear architectures are easier to train, but non
linear ones (e.g., neural networks) are richer 

• Computer chess example: 

− Think of board position as state and move 
as control 

− Uses a feature-based position evaluator that 
assigns a score (or approximate Q-factor) to 
each position/move 

Feature 
Extraction 

Weighting 
of Features 

Features: 
Material balance, 
Mobility, 
Safety, etc 

Position Evaluator 

Score
  

• Relatively few special features and weights, and 
multistep lookahead 
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Approximator
i Mapping Feature Vector

Approximator ( )Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)

 

LINEAR APPROXIMATION ARCHITECTURES
 

• Often, the features encode much of the nonlin
earity inherent in the cost function approximated
 

• Then the approximation may be quite accurate 
without a complicated architecture (as an extreme 
example, the ideal feature is the true cost func
tion) 

• With well-chosen features, we can use a linear 
architecture: J̃(i; r) = φ(i)′ r, i = 1, . . . , n, or 

s 

J̃(r) = Φr = Φjrj 
j=1 

Φ: the matrix whose rows are φ(i)′ , i = 1, . . . , n, 
Φj is the jth column of Φ 

State i Feature Extraction 
Mapping Mapping 

Feature Vector φ(i) Linear 
Linear Cost 

Approximator φ(i)′ r 

• This is approximation on the subspace 

S = {Φr | r ∈ ℜs} 

spanned by the columns of Φ (basis functions) 

• Many examples of feature types: Polynomial 
approximation, radial basis functions, etc 
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ILLUSTRATIONS: POLYNOMIAL TYPE 

• Polynomial Approximation, e.g., a quadratic 
approximating function. Let the state be i = 
(i1, . . . , iq) (i.e., have q “dimensions”) and define 

φ0(i) = 1, φk(i) = ik, φkm(i) = ikim, k,m = 1, . . . , q 

Linear approximation architecture: 

q q q 

J̃(i; r) = r0 + rkik + rkmikim,
 
k=1 k=1 m=k
 

where r has components r0, rk, and rkm. 

• Interpolation: A subset I of special/representative 
states is selected, and the parameter vector r has 
one component ri per state i ∈ I. The approxi
mating function is 

J̃(i; r) = ri, i ∈ I, 

J̃(i; r) = interpolation using the values at i ∈ I, i /∈ I
 

For example, piecewise constant, piecewise linear, 
more general polynomial interpolations. 

14
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A DOMAIN SPECIFIC EXAMPLE
 

• Tetris game (used as testbed in competitions)
 

......
 

TERMINATION 

• J∗(i): optimal score starting from position i 

• Number of states > 2200 (for 10× 20 board) 

• Success with just 22 features, readily recognized 
by tetris players as capturing important aspects of 
the board position (heights of columns, etc) 

15



Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r)

SteadyState Distribution
Cost ( )

Approximate Policy Evaluation

Approximate Policy Evaluation

Initial state ( ) Time

Controlled System Cost per Stage Vector
tion Matrix ( )

Approximate Policy

Evaluation

Policy Improvement

Approximate Policy

Evaluation

Policy ImprovementGenerate “Imp

APPROX. PI - OPTION TO APPROX. Jµ OR Qµ 

• Use simulation to approximate the cost Jµ of 
the current policy µ 

• Generate “improved” policy µ by minimizing in 
(approx.) Bellman equation 

Generate “Improved” Policy µ 

Initial Policy 

J̃µ(i, r) 
Evaluate Approximate Cost 

• Altenatively approximate the Q-factors of µ
 

roved” Policy µ 

Evaluate Approximate QFactors 

µ(i) = arg minu∈U (i) Q̃µ(i, u, r) 

Initial Policy 

Q̃µ(i, u, r) 
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APPROXIMATING J∗ OR Q∗
 

• Approximation of the optimal cost function J∗ 

− Q-Learning: Use a simulation algorithm to 
approximate the Q-factors 

n 

Q∗(i, u) = g(i, u) + α pij(u)J∗(j); 
j=1 

and the optimal costs 

J∗(i) = min Q∗(i, u) 
u∈U(i) 

− Bellman Error approach: Find r to 

2 
min Ei J̃(i; r)− (T J̃)(i; r) 
r 

where Ei{·} is taken with respect to some 
distribution over the states 

− Approximate Linear Programming (we will 
not discuss here) 

• Q-learning can also be used with approxima
tions 

• Q-learning and Bellman error approach can also 
be used for policy evaluation 
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APPROXIMATION IN POLICY SPACE 

•	 A brief discussion; we will return to it later. 

• Use parametrization µ(i; r) of policies with a 
vector r = (r1, . . . , rs). Examples: 

− Polynomial, e.g., µ(i; r) = r1 + r2 · i+ r3 · i2 

− Linear feature-based 

µ(i; r) = φ1(i) · r1 + φ2(i) · r2 

•	 Optimize the cost over r. For example: 

− Each value of r defines a stationary policy, 
with cost starting at state i denoted by J̃(i; r). 

− Let (p1, . . . , pn) be some probability distri
bution over the states, and minimize over r 

n 

˜piJ(i; r) 
i=1 

−	 Use a random search, gradient, or other method 

• A special case: The parameterization of the 
policies is indirect, through a cost approximation 
architecture Ĵ , i.e., 

n 

µ(i; r) ∈ arg min pij(u) g(i, u, j) + αĴ(j; r) 
u∈U(i) 

j=1 
18
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APPROXIMATE POLICY EVALUATION
 

METHODS
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Set

=

Direct Method: Projection of cost vector Π

µ

cost vector

( ) ( ) ( )Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

DIRECT POLICY EVALUATION
 

• Approximate the cost of the current policy by 
using least squares and simulation-generated cost 
samples 

• Amounts to projection of Jµ onto the approxi
mation subspace 

Jµ 

ΠJµ 
0 

= 

Direct Method: Projection of 
cost vector Jµ 

• Solution by least squares methods 

• Regular and optimistic policy iteration 

• Nonlinear approximation architectures may also 
be used 
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DIRECT EVALUATION BY SIMULATION
 

• Projection by Monte Carlo Simulation: Com
pute the projection ΠJµ of Jµ on subspace S = 
{Φr | r ∈ ℜs}, with respect to a weighted Eu
clidean norm I · Iξ 

• Equivalently, find Φr ∗, where 
n 

r ∗ = arg min IΦr−JµI2 = arg min ξi φ(i)′ r−Jµ(i)ξ 
r∈ℜs r∈ℜs 

i=1 
• Setting to 0 the gradient at r ∗ , 

  −1n n 

r ∗ = ξiφ(i)φ(i)′ ξiφ(i)Jµ(i)
 
i=1 i=1
 

• Generate samples (i1, Jµ(i1)), . . . , (ik, Jµ(ik)) 
using distribution ξ 

• Approximate by Monte Carlo the two “expected 
values” with low-dimensional calculations 

  −1
k k 

r̂k = φ(it)φ(it)′ φ(it)Jµ(it)
 
t=1 t=1
 

• Equivalent least squares alternative calculation: 

k 
2 

r̂k = arg min φ(it)′ r − Jµ(it)
 
r∈ℜs
 

t=1 
21
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Set

=

Set

=

Direct Method: Projection of cost vector Π

µ

form of Bellman’s equation

Projection onIndirect Method: Solving a projected

cost vector

( ) ( ) ( )Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

0

Tµ(Φr) 

Φr = ΠTµ(Φr) 

INDIRECT POLICY EVALUATION
 

• An example: Galerkin approximation 

• Solve the projected equation Φr = ΠTµ(Φr) 
where Π is projection w/ respect to a suitable 
weighted Euclidean norm 

Jµ 

ΠJµ 
0 

= Subspace S = {Φr | r ∈ ℜs} 

Direct Method: Projection of Indirect Method: Solving a projected 
cost vector Jµ form of Bellman’s equation 

• Solution methods that use simulation (to man
age the calculation of Π) 

− TD(λ): Stochastic iterative algorithm for solv
ing Φr = ΠTµ(Φr) 

− LSTD(λ): Solves a simulation-based approx
imation w/ a standard solver 

− LSPE(λ): A simulation-based form of pro
jected value iteration; essentially 

Φrk+1 = ΠTµ(Φrk) + simulation noise 

22



BELLMAN EQUATION ERROR METHODS 

• Another example of indirect approximate policy
 
evaluation:
 

min IΦr − Tµ(Φr)I2 (∗)ξ r 

where I · Iξ is Euclidean norm, weighted with re
spect to some distribution ξ 

• It is closely related to the projected equation/Galerkin 
approach (with a special choice of projection norm) 

• Several ways to implement projected equation
 
and Bellman error methods by simulation. They
 
involve:
 

− Generating many random samples of states 
ik using the distribution ξ 

− Generating many samples of transitions (ik, jk) 
using the policy µ 

− Form a simulation-based approximation of 
the optimality condition for projection prob
lem or problem (*) (use sample averages in 
place of inner products) 

− Solve the Monte-Carlo approximation of the 
optimality condition 

• Issues for indirect methods: How to generate
 
the samples? How to calculate r ∗ efficiently?
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ANOTHER INDIRECT METHOD: AGGREGATION
 

• A first idea: Group similar states together into 
“aggregate states” x1, . . . , xs; assign a common 
cost value ri to each group xi. 

• Solve an “aggregate” DP problem, involving the 
aggregate states, to obtain r = (r1, . . . , rs). This 
is called hard aggregation 

1 2 3 

4 5 6 

7 8 9 

x1 x2 

x3 x4 

Φ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 0 0 0 
1 0 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 1 0 
0 0 0 1 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

• More general/mathematical view: Solve 

Φr = ΦDTµ(Φr) 

where the rows of D and Φ are prob. distributions 
(e.g., D and Φ “aggregate” rows and columns of 
the linear system J = TµJ) 

• Compare with projected equation Φr = ΠTµ(Φr). 
Note: ΦD is a projection in some interesting cases 
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according to with cost
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Original Aggregate States
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Original System States

Probabilities

 

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

 

Aggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

AGGREGATION AS PROBLEM APPROXIMATION
 

dxi φjy Q 

Original 
System States 

p̂xy(u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)φjy , 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

ĝ(x, u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)g(i, u, j) 

, g(i, u, j) 

• Aggregation can be viewed as a systematic 
approach for problem approximation. Main ele
ments: 

− Solve (exactly or approximately) the “ag
gregate” problem by any kind of VI or PI 
method (including simulation-based methods) 

−	 Use the optimal cost of the aggregate prob
lem to approximate the optimal cost of the 
original problem 

• Because an exact PI algorithm is used to solve 
the approximate/aggregate problem the method 
behaves more regularly than the projected equa
tion approach 25
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APPROXIMATE POLICY ITERATION
 

ISSUES
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THEORETICAL BASIS OF APPROXIMATE PI
 

• If policies are approximately evaluated using an 
approximation architecture such that 

max |J̃(i, rk)− J k (i)| ≤ δ, k = 0, 1, . . . µ
i 

• If policy improvement is also approximate, 

max |(T k+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ǫ, k = 0, 1, . . . µ
i 

• Error bound: The sequence {µk} generated by 
approximate policy iteration satisfies 

ǫ+ 2αδ 
lim sup max J k (i)− J∗(i) ≤µ
k→∞ i (1− α)2 

• Typical practical behavior: The method makes 
steady progress up to a point and then the iterates 
J oscillate within a neighborhood of J∗ 

k .µ

• Oscillations are quite unpredictable. 

− Some bad examples of oscillations have been 
constructed. 

− In practice oscillations between policies is 
probably not the major concern. 
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THE ISSUE OF EXPLORATION
 

• To evaluate a policy µ, we need to generate cost 
samples using that policy - this biases the simula
tion by underrepresenting states that are unlikely 
to occur under µ 

• Cost-to-go estimates of underrepresented states 
may be highly inaccurate 

• This seriously impacts the improved policy µ
 

• This is known as inadequate exploration - a 
particularly acute difficulty when the randomness 
embodied in the transition probabilities is “rela
tively small” (e.g., a deterministic system) 

• Some remedies: 

− Frequently restart the simulation and ensure 
that the initial states employed form a rich 
and representative subset 

− Occasionally generate transitions that use a 
randomly selected control rather than the 
one dictated by the policy µ 

− Other methods: Use two Markov chains (one 
is the chain of the policy and is used to gen
erate the transition sequence, the other is 
used to generate the state sequence). 
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APPROXIMATING Q-FACTORS
 

• Given J̃(i; r), policy improvement requires a 
model [knowledge of pij(u) for all controls u ∈ 
U(i)] 

• Model-free alternative: Approximate Q-factors
 

n 

Q̃(i, u; r) ≈ pij(u) g(i, u, j) + αJµ(j) 
j=1 

and use for policy improvement the minimization 

˜µ(i) ∈ arg min Q(i, u; r)
 
u∈U(i) 

• r is an adjustable parameter vector and Q̃(i, u; r) 
is a parametric architecture, such as 

s 

Q̃(i, u; r) = rmφm(i, u) 
m=1 

• We can adapt any of the cost approximation
 
approaches, e.g., projected equations, aggregation
 

• Use the Markov chain with states (i, u), so 
pij(µ(i)) is the transition prob. to (j, µ(i)), 0 to 
other (j, u′) 

• Major concern: Acutely diminished exploration
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SOME GENERAL ISSUES
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STOCHASTIC ALGORITHMS: GENERALITIES
 

• Consider solution of a linear equation x = b + 
Ax by using m simulation samples b + wk and 
A+Wk, k = 1, . . . ,m, where wk,Wk are random, 
e.g., “simulation noise” 

• Think of x = b + Ax as approximate policy 
evaluation (projected or aggregation equations) 

• Stoch. approx. (SA) approach: For k = 1, . . . ,m
 

xk+1 = (1− γk)xk + γk (b+ wk) + (A+ Wk)xk 

• Monte Carlo estimation (MCE) approach: Form 
Monte Carlo estimates of b and A 

m m
1 1 

bm = (b+ wk), Am = (A+ Wk) 
m m 

k=1 k=1 

Then solve x = bm + Amx by matrix inversion 

xm = (1−Am)−1bm 

or iteratively 

• TD(λ) and Q-learning are SA methods 

• LSTD(λ) and LSPE(λ) are MCE methods 

31
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COSTS OR COST DIFFERENCES?
 

• Consider the exact policy improvement process. 
To compare two controls u and u ′ at x, we need 

E g(x, u, w)− g(x, u ′ , w) + α Jµ(x)− Jµ(x 
′ ) 

′ where x = f(x, u, w) and x = f(x, u ′ , w) 

• Approximate Jµ(x) or 

Dµ(x, x ′ ) = Jµ(x)− Jµ(x ′ )? 

• Approximating Dµ(x, x 
′ ) avoids “noise differ

encing”. This can make a big difference 

• Important point: Dµ satisfies a Bellman equa
tion for a system with “state” (x, x ′) 

Dµ(x, x ′) = E Gµ(x, x ′ , w) + αDµ(x, x 
′ ) 

′ where x = f x, µ(x), w , x = f x′ , µ(x ′), w and 

Gµ(x, x ′ , w) = g x, µ(x), w − g x ′ , µ(x ′), w 

• Dµ can be “learned” by the standard methods 
(TD, LSTD, LSPE, Bellman error, aggregation, 
etc). This is known as differential training. 

32
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AN EXAMPLE (FROM THE NDP TEXT)
 

• System and cost per stage: 

xk+1 = xk + δuk, g(x, u) = δ(x2 + u2) 

δ > 0 is very small; think of discretization of
 
continuous-time problem involving dx(t)/dt = u(t)
 

• Consider policy µ(x) = −2x. Its cost function 
is 

5x2 
Jµ(x) = (1 + δ) +O(δ2)

4 

and its Q-factor is 

  

5x2 9x2 5 
Qµ(x, u) = + δ + u2 + xu + O(δ2)

4 4 2
 

• The important part for policy improvement is
 

  

δ u2 + 
5 
xu

2 

When Jµ(x) [or Qµ(x, u)] is approximated by 
J̃µ(x; r) [or by Q̃µ(x, u; r)], it will be dominated 

by 5x 
2 
and will be “lost” 4 
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