APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

- Review of discounted DP
- Introduction to approximate DP
- Approximation architectures
- Simulation-based approximate policy iteration
- Approximate policy evaluation
- Some general issues about approximation and simulation

REVIEW

DISCOUNTED PROBLEMS/BOUNDED COST

- Stationary system with arbitrary state space

$$
x_{k+1}=f\left(x_{k}, u_{k}, w_{k}\right), \quad k=0,1, \ldots
$$

- Cost of a policy $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$
$J_{\pi}\left(x_{0}\right)=\lim _{N \rightarrow \infty} \underset{\substack{w_{k} \\ k=0,1, \ldots}}{E}\left\{\sum_{k=0}^{N-1} \alpha^{k} g\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\}$
with $\alpha<1$, and for some M, we have $|g(x, u, w)| \leq$ M for all (x, u, w)
- Shorthand notation for DP mappings (operate on functions of state to produce other functions)
$(T J)(x)=\min _{u \in U(x)} \underset{w}{E}\{g(x, u, w)+\alpha J(f(x, u, w))\}, \forall x$
$T J$ is the optimal cost function for the one-stage problem with stage cost g and terminal cost αJ
- For any stationary policy μ

$$
\left(T_{\mu} J\right)(x)=\underset{w}{E}\{g(x, \mu(x), w)+\alpha J(f(x, \mu(x), w))\}, \forall x
$$

MDP - TRANSITION PROBABILITY NOTATION

- We will mostly assume the system is an n-state (controlled) Markov chain
- We will often switch to Markov chain notation
- States $i=1, \ldots, n($ instead of $x)$
- Transition probabilities $p_{i_{k} i_{k+1}}\left(u_{k}\right)$ [instead of $\left.x_{k+1}=f\left(x_{k}, u_{k}, w_{k}\right)\right]$
- Stage cost $g\left(i_{k}, u_{k}, i_{k+1}\right)$ [instead of $\left.g\left(x_{k}, u_{k}, w_{k}\right)\right]$
- Cost functions $J=(J(1), \ldots, J(n))$ (vectors in \Re^{n})
- Cost of a policy $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$
- Shorthand notation for DP mappings

$$
\begin{aligned}
& (T J)(i)=\min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)(g(i, u, j)+\alpha J(j)), \quad i=1, \ldots, n, \\
& \left(T_{\mu} J\right)(i)=\sum_{j=1}^{n} p_{i j}(\mu(i))(g(i, \mu(i), j)+\alpha J(j)), \quad i=1, \ldots, n
\end{aligned}
$$

"SHORTHAND" THEORY - A SUMMARY

- Bellman's equation: $J^{*}=T J^{*}, J_{\mu}=T_{\mu} J_{\mu}$ or

$$
J^{*}(i)=\min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J^{*}(j)\right), \quad \forall i
$$

$$
J_{\mu}(i)=\sum_{j=1}^{n} p_{i j}(\mu(i))\left(g(i, \mu(i), j)+\alpha J_{\mu}(j)\right), \quad \forall i
$$

- Optimality condition:
$\mu:$ optimal $<==>\quad T_{\mu} J^{*}=T J^{*}$
i.e.,
$\mu(i) \in \arg \min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J^{*}(j)\right), \quad \forall i$

THE TWO MAIN ALGORITHMS: VI AND PI

- Value iteration: For any $J \in \Re^{n}$

$$
J^{*}(i)=\lim _{k \rightarrow \infty}\left(T^{k} J\right)(i), \quad \forall i=1, \ldots, n
$$

- Policy iteration: Given μ^{k}
- Policy evaluation: Find $J_{\mu^{k}}$ by solving

$$
\begin{aligned}
J_{\mu^{k}}(i) & =\sum_{j=1}^{n} p_{i j}\left(\mu^{k}(i)\right)\left(g\left(i, \mu^{k}(i), j\right)+\alpha J_{\mu^{k}}(j)\right), \quad i=1, \ldots, n \\
& \text { or } J_{\mu^{k}}=T_{\mu^{k}} J_{\mu^{k}} \\
- & \text { Policy improvement: Let } \mu^{k+1} \text { be such that }
\end{aligned}
$$

$$
\begin{aligned}
& \mu^{k+1}(i) \in \arg \min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J_{\mu^{k}}(j)\right), \quad \forall i \\
& \quad \text { or } T_{\mu^{k+1}} J_{\mu^{k}}=T J_{\mu^{k}}
\end{aligned}
$$

- Policy evaluation is equivalent to solving an $n \times n$ linear system of equations
- For large n, exact PI is out of the question. We use instead optimistic PI (policy evaluation with a few VIs)

APPROXIMATE DP

GENERAL ORIENTATION TO ADP

- ADP (late 80s - present) is a breakthrough methodology that allows the application of DP to problems with many or infinite number of states.
- Other names for ADP are:
- "reinforcement learning" (RL).
- "neuro-dynamic programming" (NDP).
- "adaptive dynamic programming" (ADP).
- We will mainly adopt an n-state discounted model (the easiest case - but think of HUGE n).
- Extensions to other DP models (continuous space, continuous-time, not discounted) are possible (but more quirky). We will set aside for later.
- There are many approaches:
- Problem approximation
- Simulation-based approaches (we will focus on these)
- Simulation-based methods are of three types:
- Rollout (we will not discuss further)
- Approximation in value space
- Approximation in policy space

WHY DO WE USE SIMULATION?

- One reason: Computational complexity advantage in computing sums/expectations involving a very large number of terms
- Any sum

$$
\sum_{i=1}^{n} \boldsymbol{a}_{i}
$$

can be written as an expected value:

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} \xi_{i} \frac{a_{i}}{\xi_{i}}=E_{\xi}\left\{\frac{a_{i}}{\xi_{i}}\right\}
$$

where ξ is any prob. distribution over $\{1, \ldots, n\}$

- It can be approximated by generating many samples $\left\{i_{1}, \ldots, i_{k}\right\}$ from $\{1, \ldots, n\}$, according to distribution ξ, and Monte Carlo averaging:

$$
\sum_{i=1}^{n} a_{i}=E_{\xi}\left\{\frac{a_{i}}{\xi_{i}}\right\} \approx \frac{1}{k} \sum_{t=1}^{k} \frac{a_{i_{t}}}{\xi_{i_{t}}}
$$

- Simulation is also convenient when an analytical model of the system is unavailable, but a simulation/computer model is possible.

APPROXIMATION IN VALUE AND POLICY SPACE

APPROXIMATION IN VALUE SPACE

- Approximate J^{*} or J_{μ} from a parametric class $\tilde{J}(i ; r)$ where i is the current state and $r=\left(r_{1}, \ldots, r_{m}\right)$ is a vector of "tunable" scalars weights
- Use \tilde{J} in place of J^{*} or J_{μ} in various algorithms and computations
- Role of r : By adjusting r we can change the "shape" of \tilde{J} so that it is "close" to J^{*} or J_{μ}
- Two key issues:
- The choice of parametric class $\tilde{J}(i ; r)$ (the approximation architecture)
- Method for tuning the weights ("training" the architecture)
- Success depends strongly on how these issues are handled ... also on insight about the problem
- A simulator may be used, particularly when there is no mathematical model of the system (but there is a computer model)
- We will focus on simulation, but this is not the only possibility
- We may also use parametric approximation for Q-factors or cost function differences

APPROXIMATION ARCHITECTURES

- Divided in linear and nonlinear [i.e., linear or nonlinear dependence of $\tilde{J}(i ; r)$ on $r]$
- Linear architectures are easier to train, but nonlinear ones (e.g., neural networks) are richer
- Computer chess example:
- Think of board position as state and move as control
- Uses a feature-based position evaluator that assigns a score (or approximate Q-factor) to each position/move

- Relatively few special features and weights, and multistep lookahead

LINEAR APPROXIMATION ARCHITECTURES

- Often, the features encode much of the nonlinearity inherent in the cost function approximated - Then the approximation may be quite accurate without a complicated architecture (as an extreme example, the ideal feature is the true cost function)
- With well-chosen features, we can use a linear architecture: $\tilde{J}(i ; r)=\phi(i)^{\prime} r, i=1, \ldots, n$, or

$$
\tilde{J}(r)=\Phi r=\sum_{j=1}^{s} \Phi_{j} r_{j}
$$

Φ : the matrix whose rows are $\phi(i)^{\prime}, i=1, \ldots, n$, Φ_{j} is the j th column of Φ

- This is approximation on the subspace

$$
S=\left\{\Phi r \mid r \in \Re^{s}\right\}
$$

spanned by the columns of Φ (basis functions)

- Many examples of feature types: Polynomial approximation, radial basis functions, etc

ILLUSTRATIONS: POLYNOMIAL TYPE

- Polynomial Approximation, e.g., a quadratic approximating function. Let the state be $i=$ $\left(i_{1}, \ldots, i_{q}\right)$ (i.e., have q "dimensions") and define $\phi_{0}(i)=1, \quad \phi_{k}(i)=i_{k}, \quad \phi_{k m}(i)=i_{k} i_{m}, \quad k, m=1, \ldots, q$ Linear approximation architecture:

$$
\tilde{J}(i ; r)=r_{0}+\sum_{k=1}^{q} r_{k} i_{k}+\sum_{k=1}^{q} \sum_{m=k}^{q} r_{k m} i_{k} i_{m},
$$

where r has components r_{0}, r_{k}, and $r_{k m}$.

- Interpolation: A subset I of special/representative states is selected, and the parameter vector r has one component r_{i} per state $i \in I$. The approximating function is

$$
\tilde{J}(i ; r)=r_{i}, \quad i \in I,
$$

$\tilde{J}(i ; r)=$ interpolation using the values at $i \in I, i \notin I$
For example, piecewise constant, piecewise linear, more general polynomial interpolations.

A DOMAIN SPECIFIC EXAMPLE

- Tetris game (used as testbed in competitions)

......

TERMINATION

- $J^{*}(i)$: optimal score starting from position i
- Number of states $>2^{200}$ (for 10×20 board)
- Success with just 22 features, readily recognized by tetris players as capturing important aspects of the board position (heights of columns, etc)

APPROX. PI - OPTION TO APPROX. J_{μ} OR Q_{μ}

- Use simulation to approximate the cost J_{μ} of the current policy μ
- Generate "improved" policy $\bar{\mu}$ by minimizing in (approx.) Bellman equation

Approximate Policy Evaluation

Policy Improvement

- Altenatively approximate the Q-factors of μ

APPROXIMATING J^{*} OR Q^{*}

- Approximation of the optimal cost function J^{*} - Q-Learning: Use a simulation algorithm to approximate the Q-factors

$$
Q^{*}(i, u)=g(i, u)+\alpha \sum_{j=1}^{n} p_{i j}(u) J^{*}(j)
$$

and the optimal costs

$$
J^{*}(i)=\min _{u \in U(i)} Q^{*}(i, u)
$$

- Bellman Error approach: Find r to

$$
\min _{r} E_{i}\left\{(\tilde{J}(i ; r)-(T \tilde{J})(i ; r))^{2}\right\}
$$

where $E_{i}\{\cdot\}$ is taken with respect to some distribution over the states

- Approximate Linear Programming (we will not discuss here)
- Q-learning can also be used with approximations
- Q-learning and Bellman error approach can also be used for policy evaluation

APPROXIMATION IN POLICY SPACE

- A brief discussion; we will return to it later.
- Use parametrization $\mu(i ; r)$ of policies with a vector $r=\left(r_{1}, \ldots, r_{s}\right)$. Examples:
- Polynomial, e.g., $\mu(i ; r)=r_{1}+r_{2} \cdot i+r_{3} \cdot i^{2}$
- Linear feature-based

$$
\mu(i ; r)=\phi_{1}(i) \cdot r_{1}+\phi_{2}(i) \cdot r_{2}
$$

- Optimize the cost over r. For example:
- Each value of r defines a stationary policy, with cost starting at state i denoted by $\tilde{J}(i ; r)$.
- Let $\left(p_{1}, \ldots, p_{n}\right)$ be some probability distribution over the states, and minimize over r

$$
\sum_{i=1}^{n} p_{i} \tilde{J}(i ; r)
$$

- Use a random search, gradient, or other method - A special case: The parameterization of the policies is indirect, through a cost approximation architecture \hat{J}, i.e.,
$\mu(i ; r) \in \arg \min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u) g(i, u, j)+\alpha \hat{J}(j ; r)$

APPROXIMATE POLICY EVALUATION METHODS

DIRECT POLICY EVALUATION

- Approximate the cost of the current policy by using least squares and simulation-generated cost samples
- Amounts to projection of J_{μ} onto the approximation subspace

Direct Method: Projection of cost vector J_{μ}

- Solution by least squares methods
- Regular and optimistic policy iteration
- Nonlinear approximation architectures may also be used

DIRECT EVALUATION BY SIMULATION

- Projection by Monte Carlo Simulation: Compute the projection ΠJ_{μ} of J_{μ} on subspace $S=$ $\left\{\Phi r \mid r \in \Re^{s}\right\}$, with respect to a weighted Euclidean norm $\|\cdot\|_{\xi}$
- Equivalently, find Φr^{*}, where

$$
r^{*}=\arg \min _{r \in \Re^{s}}\left\|\Phi r-J_{\mu}\right\|_{\xi}^{2}=\arg \min _{r \in \Re^{s}} \sum_{i=1}^{n} \xi_{i}\left(\phi(i)^{\prime} r-J_{\mu}(i)\right)^{2}
$$

- Setting to 0 the gradient at r^{*},

$$
r^{*}=\left(\sum_{i=1}^{n} \xi_{i} \phi(i) \phi(i)^{\prime}\right)^{-1} \sum_{i=1}^{n} \xi_{i} \phi(i) J_{\mu}(i)
$$

- Generate samples $\left(i_{1}, J_{\mu}\left(i_{1}\right)\right), \ldots,\left(i_{k}, J_{\mu}\left(i_{k}\right)\right)$ using distribution ξ
- Approximate by Monte Carlo the two "expected values" with low-dimensional calculations

$$
\hat{r}_{k}=\left(\sum_{t=1}^{k} \phi\left(i_{t}\right) \phi\left(i_{t}\right)^{\prime}\right)^{-1} \sum_{t=1}^{k} \phi\left(i_{t}\right) J_{\mu}\left(i_{t}\right)
$$

- Equivalent least squares alternative calculation:

$$
\hat{r}_{k}=\arg \min _{r \in \Re^{s}} \sum_{t=1}^{k}\left(\phi\left(i_{t}\right)^{\prime} r-J_{\mu}\left(i_{t}\right)\right)^{2}
$$

INDIRECT POLICY EVALUATION

- An example: Galerkin approximation
- Solve the projected equation $\Phi r=\Pi T_{\mu}(\Phi r)$ where Π is projection w/ respect to a suitable weighted Euclidean norm

Subspace $S=\left\{\Phi r \mid r \in \Re^{s}\right\}$
Direct Method: Projection of cost vector J_{μ}

Indirect Method: Solving a projected form of Bellman's equation

- Solution methods that use simulation (to manage the calculation of Π)
- TD (λ) : Stochastic iterative algorithm for solving $\Phi r=\Pi T_{\mu}(\Phi r)$
$-\operatorname{LSTD}(\lambda)$: Solves a simulation-based approximation w/ a standard solver
- $\operatorname{LSPE}(\lambda)$: A simulation-based form of projected value iteration; essentially
$\Phi r_{k+1}=\Pi T_{\mu}\left(\Phi r_{k}\right)+$ simulation noise

BELLMAN EQUATION ERROR METHODS

- Another example of indirect approximate policy evaluation:

$$
\begin{equation*}
\min _{r}\left\|\Phi r-T_{\mu}(\Phi r)\right\|_{\xi}^{2} \tag{*}
\end{equation*}
$$

where $\|\cdot\|_{\xi}$ is Euclidean norm, weighted with respect to some distribution ξ

- It is closely related to the projected equation/Galerkin approach (with a special choice of projection norm)
- Several ways to implement projected equation and Bellman error methods by simulation. They involve:
- Generating many random samples of states i_{k} using the distribution ξ
- Generating many samples of transitions $\left(i_{k}, j_{k}\right)$ using the policy μ
- Form a simulation-based approximation of the optimality condition for projection problem or problem $\left(^{*}\right.$) (use sample averages in place of inner products)
- Solve the Monte-Carlo approximation of the optimality condition
- Issues for indirect methods: How to generate the samples? How to calculate r^{*} efficiently?

ANOTHER INDIRECT METHOD: AGGREGATION

- A first idea: Group similar states together into "aggregate states" x_{1}, \ldots, x_{s}; assign a common cost value r_{i} to each group x_{i}.
- Solve an "aggregate" DP problem, involving the aggregate states, to obtain $r=\left(r_{1}, \ldots, r_{s}\right)$. This is called hard aggregation

$$
\Phi=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- More general/mathematical view: Solve

$$
\Phi r=\Phi D T_{\mu}(\Phi r)
$$

where the rows of D and Φ are prob. distributions (e.g., D and Φ "aggregate" rows and columns of the linear system $J=T_{\mu} J$)

- Compare with projected equation $\Phi r=\Pi T_{\mu}(\Phi r)$. Note: ΦD is a projection in some interesting cases

AGGREGATION AS PROBLEM APPROXIMATION

- Aggregation can be viewed as a systematic approach for problem approximation. Main elements:
- Solve (exactly or approximately) the "aggregate" problem by any kind of VI or PI method (including simulation-based methods)
- Use the optimal cost of the aggregate problem to approximate the optimal cost of the original problem
- Because an exact PI algorithm is used to solve the approximate/aggregate problem the method behaves more regularly than the projected equation approach

APPROXIMATE POLICY ITERATION

 ISSUES
THEORETICAL BASIS OF APPROXIMATE PI

- If policies are approximately evaluated using an approximation architecture such that

$$
\max _{i}\left|\tilde{J}\left(i, r_{k}\right)-J_{\mu^{k}}(i)\right| \leq \delta, \quad k=0,1, \ldots
$$

- If policy improvement is also approximate,

$$
\max _{i}\left|\left(T_{\mu^{k+1}} \tilde{J}\right)\left(i, r_{k}\right)-(T \tilde{J})\left(i, r_{k}\right)\right| \leq \epsilon, \quad k=0,1, \ldots
$$

- Error bound: The sequence $\left\{\mu^{k}\right\}$ generated by approximate policy iteration satisfies

$$
\limsup _{k \rightarrow \infty} \max _{i} J_{\mu^{k}}(i)-J^{*}(i) \leq \frac{\epsilon+2 \alpha \delta}{(1-\alpha)^{2}}
$$

- Typical practical behavior: The method makes steady progress up to a point and then the iterates $J_{\mu^{k}}$ oscillate within a neighborhood of J^{*}.
- Oscillations are quite unpredictable.
- Some bad examples of oscillations have been constructed.
- In practice oscillations between policies is probably not the major concern.

THE ISSUE OF EXPLORATION

- To evaluate a policy μ, we need to generate cost samples using that policy - this biases the simulation by underrepresenting states that are unlikely to occur under μ
- Cost-to-go estimates of underrepresented states may be highly inaccurate
- This seriously impacts the improved policy $\bar{\mu}$
- This is known as inadequate exploration - a particularly acute difficulty when the randomness embodied in the transition probabilities is "relatively small" (e.g., a deterministic system)
- Some remedies:
- Frequently restart the simulation and ensure that the initial states employed form a rich and representative subset
- Occasionally generate transitions that use a randomly selected control rather than the one dictated by the policy μ
- Other methods: Use two Markov chains (one is the chain of the policy and is used to generate the transition sequence, the other is used to generate the state sequence).

APPROXIMATING Q-FACTORS

- Given $\tilde{J}(i ; r)$, policy improvement requires a model [knowledge of $p_{i j}(u)$ for all controls $u \in$ $U(i)]$
- Model-free alternative: Approximate Q-factors

$$
\tilde{Q}(i, u ; r) \approx \sum_{j=1}^{n} p_{i j}(u) g(i, u, j)+\alpha J_{\mu}(j)
$$

and use for policy improvement the minimization

$$
\bar{\mu}(i) \in \arg \min _{u \in U(i)} \tilde{Q}(i, u ; r)
$$

- r is an adjustable parameter vector and $\tilde{Q}(i, u ; r)$ is a parametric architecture, such as

$$
\tilde{Q}(i, u ; r)=\sum_{m=1}^{s} r_{m} \phi_{m}(i, u)
$$

- We can adapt any of the cost approximation approaches, e.g., projected equations, aggregation
- Use the Markov chain with states (i, u), so $p_{i j}(\mu(i))$ is the transition prob. to $(j, \mu(i)), 0$ to other $\left(j, u^{\prime}\right)$
- Major concern: Acutely diminished exploration

SOME GENERAL ISSUES

STOCHASTIC ALGORITHMS: GENERALITIES

- Consider solution of a linear equation $x=b+$ $A x$ by using m simulation samples $b+w_{k}$ and $A+W_{k}, k=1, \ldots, m$, where w_{k}, W_{k} are random, e.g., "simulation noise"
- Think of $x=b+A x$ as approximate policy evaluation (projected or aggregation equations)
- Stoch. approx. (SA) approach: For $k=1, \ldots, m$

$$
x_{k+1}=\left(1-\gamma_{k}\right) x_{k}+\gamma_{k}\left(\left(b+w_{k}\right)+\left(A+W_{k}\right) x_{k}\right.
$$

- Monte Carlo estimation (MCE) approach: Form Monte Carlo estimates of b and A

$$
b_{m}=\frac{1}{m} \sum_{k=1}^{m}\left(b+w_{k}\right), \quad A_{m}=\frac{1}{m} \sum_{k=1}^{m}\left(A+W_{k}\right)
$$

Then solve $x=b_{m}+A_{m} x$ by matrix inversion

$$
x_{m}=\left(1-A_{m}\right)^{-1} b_{m}
$$

or iteratively

- $\mathrm{TD}(\lambda)$ and Q-learning are SA methods
- $\operatorname{LSTD}(\lambda)$ and $\operatorname{LSPE}(\lambda)$ are MCE methods

COSTS OR COST DIFFERENCES?

- Consider the exact policy improvement process. To compare two controls u and u^{\prime} at x, we need

$$
\left.\left.E g(x, u, w)-g\left(x, u^{\prime}, w\right)+\alpha J_{\mu}(\bar{x})-J_{\mu}\left(\bar{x}^{\prime}\right)\right)\right\}
$$

where $\bar{x}=f(x, u, w)$ and $\bar{x}^{\prime}=f\left(x, u^{\prime}, w\right)$

- Approximate $J_{\mu}(\bar{x})$ or

$$
D_{\mu}\left(\bar{x}, \bar{x}^{\prime}\right)=J_{\mu}(\bar{x})-J_{\mu}\left(\bar{x}^{\prime}\right) ?
$$

- Approximating $D_{\mu}\left(\bar{x}, \bar{x}^{\prime}\right)$ avoids "noise differencing". This can make a big difference
- Important point: D_{μ} satisfies a Bellman equation for a system with "state" $\left(x, x^{\prime}\right)$

$$
D_{\mu}\left(x, x^{\prime}\right)=E\left\{G_{\mu}\left(x, x^{\prime}, w\right)+\alpha D_{\mu}\left(\bar{x}, \bar{x}^{\prime}\right)\right\}
$$

where $\bar{x}=f(x, \mu(x), w), \bar{x}^{\prime}=f\left(x^{\prime}, \mu\left(x^{\prime}\right), w\right)$ and

$$
G_{\mu}\left(x, x^{\prime}, w\right)=g(x, \mu(x), w)-g\left(x^{\prime}, \mu\left(x^{\prime}\right), w\right)
$$

- D_{μ} can be "learned" by the standard methods (TD, LSTD, LSPE, Bellman error, aggregation, etc). This is known as differential training.

AN EXAMPLE (FROM THE NDP TEXT)

- System and cost per stage:

$$
x_{k+1}=x_{k}+\delta u_{k}, \quad g(x, u)=\delta\left(x^{2}+u^{2}\right)
$$

$\delta>0$ is very small; think of discretization of continuous-time problem involving $d x(t) / d t=u(t)$

- Consider policy $\mu(x)=-2 x$. Its cost function is

$$
J_{\mu}(x)=\frac{5 x^{2}}{4}(1+\delta)+O\left(\delta^{2}\right)
$$

and its Q-factor is

$$
Q_{\mu}(x, u)=\frac{5 x^{2}}{4}+\delta\left(\frac{9 x^{2}}{4}+u^{2}+\frac{5}{2} x u\right)+O\left(\delta^{2}\right)
$$

- The important part for policy improvement is

$$
\delta\left(u^{2}+\frac{5}{2} x u\right)
$$

When $J_{\mu}(x)\left[\right.$ or $\left.Q_{\mu}(x, u)\right]$ is approximated by $\tilde{J}_{\mu}(x ; r)\left[\right.$ or by $\left.\tilde{Q}_{\mu}(x, u ; r)\right]$, it will be dominated by $\frac{5 x^{2}}{4}$ and will be "lost"

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

