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Chapter 24 

Observability
 

24.1 Introduction 

Observability is a notion that plays a major role in �ltering and reconstruction of states from inputs 

and outputs. Together with reachability, observability is central to the understanding of feedback 

control systems. 

24.2 Observability 

It turns out it is more natural to think in terms of \unobservability" as re�ected in the following 

de�nition. 

De�nition 24.1 A state q of a �nite dimensional dynamic system is said to be unobservable over [0� T ) 

if, with x(0) � q and for every u(t) over [0� T ), we get the same y(t) as we would with x(0) � 0, i.e. 

an unobservable initial condition cannot be distinguished from the zero initial condition. The dynamic 

system is called unobservable if it has an unobservable state, and otherwise it is called observable. 

The initial state x(0) can be uniquely determined from input/output measurements i� the system 

is observable (prove this). This can be taken as an alternate de�nition of observability. 

24.3 Discrete-Time Analysis 

We begin with the system description in state space: 

x(k + 1) � Ax(k) + Bu(k) 

y(k) � Cx(k) + Du(k) (24.1) 


 



Suppose we are given u(t) and y(t) for 0 � t � T . We can expand (24.1) as follows: 3232 
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CAT ;2B CAT ;3B 0 � � � D u(T ; 1) 

Now the second term on the right | the forced response | is known, so we can subtract it from the 

vector of measured outputs to get 2
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where we have made the obvious de�nitions for y and the T -step observability matrix OT 

. The issue 

of observability over T steps then boils down to our ability to determine x(0) uniquely from knowledge 

of y. Equation (24.3) shows that we only need to check observability for u � 0� the e�ect of a nonzero 

input is just to change what y is, but in either case y is a known vector. The following result is an 

immediate consequence of (24.3). 

Theorem 24.1 The set of states that is unobservable over T steps is precisely N (OT 

), and is therefore 

a subspace. 

Notice also that 

N (Ok) � N (Ok+1) (24.4) 

N (On) � N (On+`) � ` � 1 (24.5) 

Equations (24.4) and (24.5) lead to the following theorem. 

Theorem 24.2 If x(0) � � is unobservable over n steps, then it is unobservable over any number of 

steps. Equivalently, the system is observable if and only if rank(On) � n. 

Proof: The proofs of all of these results parallel the proofs of similar results in reachability, and are 

left to the reader to complete. 

Note that in the context of reachability, it was the set of reachable states that formed a subspace, 

whereas now it is the set of unobservable states that forms a subspace. We denote this subspace by 

O (C�A) or simply O . It is evident that 

O (C�A) � R 

� 

(A0� C 0) 

where R (A0� C 0) is the reachable subspace that would be associated with the system 

d(k + 1) � A0d(k) + C 0 e(k) 



(whose state vector is d and input is e). Reachability and unobservability are said to be dual concepts, 

on account of the preceding connections. 

Example 24.1 (Harmonic Oscillator) 

Suppose the position and velocity of a particle that is oscillating harmonically at a fre-
quency of ! are sampled with a sampling period of � seconds. A state-space description 

of the sampled state vector is given by: �
 �
 

cos(!�) 

1 

x(k + 1) � 

! 

sin(!�) 

x(k)� ;! sin(!�) cos(!�) 

where x1 

is the position of the particle, and x2 

is the velocity. Suppose the measured 

output is x1, i.e. �
 �
 

y(k) � Cx(k) � 
1 0 x(k):
 

The subspace of initial conditions that is unobservable over 1 time step is just the nullspace
 

of C: ��  ��
 �
 �
 0 N (C) � N 
1 0 � span : 

1 

The subspace unobservable over 2 time steps is � � 

1 0 N 

cos(!�) ! 

1 sin !� 8 ��  �� � 0�� 

span if !� � N�� N 2 Z 

1 

�
 ��:
 � if !� �6 N� 

This simply says that if the sampling interval is an integer multiple of one-half the os-
cillation period, the system will not be observable. Note that an unobservable system 

with N � 1 corresponds to sampling at exactly the Nyquist rate� the system is always 

observable at sampling frequencies higher than the Nyquist rate. 

24.3.1 Modal Interpretation of Unobservability 

We start with the time-domain representation of the output for u(k) � 0. If A is diagonalizable, this 

yields 

y(k) � CAk x(0) (24.6) 

nX
� C �ki 

viwi
T x(0) 

i�1 

nX 

� Cvi[wi
T x(0)]�i

k : (24.7) 

i�1 

Suppose there exists an eigenvector vi 

�� 1 � i� � n, such that Cvi� � 0. Is there an initial state such 

that y(k) � 0 � 8 k � 0� If we choose x(0) � vi� , then, referring to (24.7), we see that 

T T � i�wi 

x(0) � wi 

vi� � 0� for i 6 : 

But when i � i� in (24.7), Cvi� � 0. Hence y(k) � 0� 8 k � 0. 



24.3.2 The Observability Gramian 

We begin by de�ning the k-step observability Gramian as 

Qk 

� Ok
T Ok 

k;1 

� (Ai)T CT CA : 

i 

The unobservable space over k steps is evidently the nullspace of Qk. The system is observable if and 

only if rank(Qn) � n. If the system is stable, then we can de�ne the observability Gramian as 

X 

i�0 

1X 

Q � lim Qk 

� (Ai)T CT CA : 

i 

k!1 

i�1 

Q satis�es a Lyapunov equation that is quite similar to the reachability gramian, i.e., 

AT QA ;Q � ;CT C:  

24.4 Continuous-Time Analysis 

As with reachability, the discussion of observability for continuous-time systems is algebraically very 

similar to the discussion for discrete-time systems. We begin with a theorem. 

Theorem 24.3 For continuous-time systems, the following conditions are equivalent: 

1. x(0) is unobservable in time T . 

2. x(0) is unobservable in any time. 2
 3
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Proof: 1) �) 2): 

If � is unobservable in time T , then for x(0) � �, if u(t) � 0 then y(t) � 0� 0 � t � T . It follows 

that 

0 � CeAt�� 0 � t � T 

From this, it follows that 

CeA0� � C� � 0 

d 

CeAt� 

dt 

���� 

����


t�0 

. . . 

� CA� � 0


dk 

CeAt� � CAk� � 0: 

dtk 


 

t�0 



Now, since the power series representation is valid 8 t � 0, this implies that 

CeAt� � 0� 8 t � 0: 

Hence the result. 

2) �) 1): 

This is immediate. 

2) () 3): This follows from the Taylor series argument, since by Cayley-Hamilton, 2 
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24.4.1 The Observability Gramian 

De�ne Z t 

Qt 

� (e 

A� )T CT CeA� d�: 

0 

The system is then observable if and only if rank(Qt) � n� 8 t � 0. If A is stable, then we may 

de�ne the observability Gramian as Z 1 

Q � (e 

A� )T CT CeA� d�: 

0 

Once again, Q satis�es a Lyapunov equation: 

AT Q + QA � ;CT C:  

24.5 Further Results 

In view of duality, we can use our reachability results to immediately derive various conclusions, tests, 

standard and canonical forms, etc., for observable and unobservable systems. We shall simply list the 

main results: 

Fact 1: The unobservable subspace is A-invariant (and is in fact the largest A-invariant subspace 

contained in the nullspace of C). 

Fact 2: An unobservable pair (C�  A  ) can be taken by a similarity transformation to the form �
 �
 

A ! 

A1 

0 

A12 

A2 

(24.8) �
 �

 

C ! 
0 C2 

(24.9) 



where (C2� A2) is observable. The unobservable subspace of the system associated with (24.8), (24.9)�
 �
 � 

is given by states of the form . The eigenvalues of A1 

are the unobservable eigenvalues of the 

0 

system, while those of A2 

are the observable eigenvalues. 

Fact 3: The system is unobservable i� Cv � 0 for some right eigenvector v of A, associated with an 

eigenvalue �� or equivalently i� �
 �
 

sI ; A 

(24.10)
C 

drops rank for some s � �. This � is an unobservable eigenvalue of the system. 

Fact 4: The dual of the problem of controllability to the origin is referred to as constructability of 

the �nal state, i.e. instead of trying to uniquely determine the initial state x(0) from input/output 

measurements over an interval, we wish to determine the �nal state. In CT, the condition for this 

reduces to the observability condition, but in DT it turns out that x(k) (for k � n) can be determined 

from u(i)� y(i) over [0� k ; 1] i� 

N (On) � N (An): (24.11) 

We leave you to prove this. Note that for invertible A we recover the observability condition. 

Fact 5: Any single-output (SO) observable nth-order system is similarity transformable to an observ-
ability canonical form (dual to the reachability/controllability canonical form presented last lecture) 

or to an observer canonical form (dual to the controller canonical form of last lecture). 

24.5.1 Standard Form for Unobservable Systems 

Given an arbitrary system, we can construct a rectangular matrix T o
n�r , whose columns span the 

nullspace of the observability matrix On. We may then construct T 

0 by selecting (n ; r) linearly 

independent vectors, such that �
 �
 

rank(T 

n�n) � rank 
To 

T 

0 � n: 

Since T is invertible, we can perform a similarity transform to generate an equivalent system, where 

we have: �
 �
 ����
AT � A To 

T 

0 � TA � 
To 

T 

0 

A1 

A2 

0 A3 

(24.12)


���� 

CT � C To 

T 

0 � C � 0 C1 

(24.13) 

The presence of the zero blocks in the transformed system and output matrices follows from an argu-
ment similar to that used for the reachable canonical form coupled with the fact the the unobservable 

space is also A-invariant. It follows from (24.12) and (24.13) that 3232 
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Now since the transformed system is equivalent to the original one, 

rank(On) � rank(On): 



Theorem 24.4 (Modal Test) A continuous-time system is observable if and only if � � 

�I ; A 

rank � n� 8 � 2 C 

C 

Proof: The proof follows from the observable canonical form. 



Exercises 

Exercise 24.1 (a) Given the observable nth-order DT system x(k + 1) � Ax(k) + Bu(k), y(k) � 

Cx(k) + Du(k), show that we can uniquely determine the initial condition x(0) from output 

measurements alone, i.e. without knowledge of the inputs u(i), if D � 0, CB � 0, CAB � 

0� : : : � CAn;2B � 0. 

(b)	 (Optional) Prove that the su�cient condition in (a) is also necessary in the case where the output 

y is scalar. 

(c)	 Verify in the case of a single-input, single-output (SISO) system that the condition in (a) corre-
sponds to the transfer function of the system having no (�nite) zeros, only poles. 

Exercise 24.2 Consider the system x(k +1) � Ax(k), y(k) � Cx(k), and suppose that A and C have 

the following form: 0
 

A11 

A12 

0 : : : 0
1


A �


BBBB@


A21 

A22 

A23 

: : : 0 

. . . . . . . . . . . . . . . 

Ak;1�1 

Ak;1�2 

Ak;1�3 

: : : Ak;1�k 

CCCCA

 

Ak1 

Ak2 

Ak3 

: : : Akk  

C � ( C1 

0 0 : : : 0 ) 

with the Ai;1�i 

and C1 

all having full column rank, and with the Aii 

all square. 

(a)	 Show that the system is observable. (Hint: Show �rst that if P and Q have full column rank, 

then PQ has full column rank.) 

(b) What can you say about the system if Ak;1�k, instead of having full column rank, is actually 0� 

[The results of this problem form the basis for one of the best numerical methods for checking 

observability (or, using a dual set of results and computations, for checking reachability). The 

point is that orthogonal (and therefore numerically well behaved) similarity transformations can 

be used to bring a (C�A  ) pair to the structured form above.] 

Exercise 24.3 (a) Consider the CT single-output nth-order observable system x_ (t) � Ax(t) � y(t) � 

cx(t), where c is an n-component vector. Suppose we observe only samples of the output, taken 

at times t � kT for integer k and some �xed T . Write down a DT state-space model that 

describes the evolution of these output samples. 



(b)	 Find a necessary and su�cient condition, stated in terms of the eigenvalues of A, for your DT 

model in (a) to be observable. (Hint: First show that there is no loss of generality in taking A 

to be in Jordan form.) 

Exercise 24.4 Consider an observable single output LTI system. Find the smallest perturbation of 

the C row vector, k�k2, so that the system becomes unobservable. 

Exercise 24.5 Consider a SISO, stable, discrete-time system with a state-space description given by 

(A� B� C� 0), both reachable and observable. The dimension of the state vector is equal to n. We are 

interested in studying the e�ects of past inputs on future outputs in a precise fashion. It turns out 

that this information is quite valuable in model reduction problems, but we will not look into that 

here. Recall that the energy of a signal u is given by 

1X 

2 2kuk2 

� (u 

T u) 

1 1 

� (	 u(t)2) 

t�;1 

(Don't be afraid to transpose in�nite vectors or matrices). 

The precise quantity that we would like to compute is: 

1 ;1X X 

� � maxf y(t)2 j u(t)2 � 1� u(k) � 0 8k � 0g
u 

t�0 

t�;1 

In words, we want to �nd the maximal achievable energy of the output after t � 0 which is the response 

to an input starting at ;1 and ending at ;1, i.e., the has the following form 

T 

u � ( : : : u(;N) u(;N + 1) : : : u(;1) 0 : : : ) 

with energy less than or equal to one. 

(a)	 Find an expression for x(0) in terms of the above input. Does the value x(;1) enter your 

expression. Explain. 

(b)	 Can any � 2 R
n be achieved by some choice of an input of the above form� If so, �nd an expression 

of the minimum energy input, umin 

that achieves the value x(0) � �. Compute the square of 

the energy of umin. Write this expression in terms of the Reachability Gramian, and denote it 

by �1(�). 

(c)	 If some input umin 

results in x(0) � �, write an expression of the output for t � 0. Compute the 

square of the energy of the output (for t � 0) as a function of �. Write this in an expression 

involving the Observability Gramian and denote it by �2(�). 

(d	 ) Argue that � is given by 

� � maxf�2(�) j �1(�) � 1g
� 

. 



(e) Prove that 

� � �maxfQPg 

where P and Q are the reachability and observability gramians of the system, and �max 

denotes 

the maximum eigenvalue of a matrix.
 

(Hint: Use the fact that any symmetric positive semi-de�nite matrix can be written as MT M .
 

Also you may need the fact that �max(M
T GM) � �max(GMMT )).
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