
    

6.302 Feedback Systems
Recitation ��: Phase-locked Loops
Prof. Joel L. Dawson 

Phase-locked loops are a foundational building block for analog circuit design, particularly 
for communications circuits. They provide a good example system for this class because they 
are an excellent exercise in physical modeling. In these systems, the key variable is the phase 
of a sinusoid. As a first step, then we must be precise about what we mean by the phase of a 
sinusoid. Consider: 

v(t) = cos [φ(t)] 

We define the frequency of a sinusoid as the instantaneous rate of change of its phase. That 
is: 

dφω ≡ dt 

EXAMPLE: v(t) = cos (ω t + φ )0 0

PHASE = ω t + φ = φ(t)0 0 

FREQUENCY = dφ(t)  = ωdt 0 

To be consistent, we write the phase in terms of the frequency: 

φ = ∫ t ω(t) dt-∞ 

So to understand phase-locked loops (PLLs) we must make the following conceptual jump... 
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VOLTAGE PICTURE:
 SIGNAL 
GENERATOR cos(ω0t + φ0) 

PLL PICTURE:
 ω0t + φ0 
SIGNAL 

GENERATOR 

Now, the anatomy of a PLL: 

VOLTAGE PICTURE


VCO = Voltage Controlled Oscillator
ω = k V0 c 
V = k  (φ  - φ) e d 0
[kd] = V/RAD 

Notice, if Ve is constant, φ - φ0 is constant => ω0 = ω


A PLL locks the output of a VCO in frequency and phase to an incoming periodic signal.


PHASE 
DETECTOR 

LOOP 
FILTER VCO 

V e V c cos(ωt + φ) cos(ω0t + φ0) 

PLL PICTURE


φ
Σ

φ 
kd 

V e 
F(s) 

V cIN e 
OUT φk0 

s 
-

VCO is an integrator. Its output frequency is 

dφOUT = k V => φ  = ∫t k V dtdt 0 c OUT -∞ 0 c 
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6.302 Feedback Systems

Now, let’s look at how we put together and use PLLs. To start, how does one build a phase 

�) ANALOG MULTIPLIER: 

) 
X 

OUT cos(ω

VOUT [cos(ω

 = ω2 = ω 

= ½ VINVOUT

After LPF, we lose high-frequency component: 

V  = ½ VINVOUT

So we get zero out of the phase detector when φ

Linearizing about this condition, we would say: 

k0 
(Notice that the constant k

2) DIGITAL XOR GATE 

VINVOUT 
2}

IN 

OUT 

detector? 

VVV cos(ω t+φIN � 020� �
LPF


V cos(ω t+φ )OUT 2 2

V = V V
 t+φ ) cos(ω t+φ )� 2 20� IN � 

= ½ V
 t + φ + ω t + φ ) + cos(ω t + φ - ω t - φ )]� 2 2 � � 2 2IN � 

IF ω


> V0�

�

 [cos(2ωt + φ + φ ) + cos(φ - φ )]� 2 � 2

 [cos(φ - φ )]� 202

 = ± π/2 .
- φ� 2

∆v  = ± ∆φ
02

 depends on the amplitude of the sinusoids.) 0

VIN VOUT VXOR 

0 0 0 
0 � � 
� 0 � 
� � 0 

V


V


Page 3 

Cite as: Joel Dawson, course materials for 6.302 Feedback Systems, Spring 2007.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




     

      

      

6.302 Feedback Systems
Recitation ��: Phase-locked Loops
Prof. Joel L. Dawson 

Easiest to analyze in time domain. (Here, assume square wave inputs.) 

VIN Т/2 
� 

t 

VOUT 

� 

t 

VXOR 
∆t 

� 

t 

For our phase detector output, we’ll use the average (DC) value of V :XOR

V  = �          [�·∆t + 0·(Τ/2 - ∆t)] = 2 · ∆t 
XOR T/2 T 

Now, how do we relate this to phase? Recall that for a sinusoid:

      cos(ωt - φ) = cos (2πft - φ) 

= cos ( 2π        t - φ) T 

= cos 2π (t - φ ∙ T) T 2π 

= cos 2π       (t - ∆t) => ∆t =  φ ∙ T T 2π 

φ φ eeTHUS: V  = 2
T

( 2π ∙ T) = 2πXOR
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There are many other phase detectors, each with their own strengths and weaknesses. More 
on these later... 

Application to stabilization of the frequency of a laser 

kd 

P φOUT φIN Σ � 
s

C(s) 
Laser 
Cavity 

Dynamics 

Laser Pump 
Power 

ωL 

Frequency 
of Laser 

Light 

Controller 

Reference 
Signal 

Locks frequency of laser light to a stable reference. 

Typical laser cavity dynamics: 

G(s) = e-ST ωn
2 

s2 + 2ζω s + ω 2 
n n 

delay                                                
             second order system 

Typical choices for a controller: C(s) = D s0
D s + P0 0 
I � 

0 s 

k k
Returning to a general case, we have L(s) =  0 d F(s), where as a designer you usually have s k k
some control over the form of F(s). Suppose we choose F(s) = �, so that L(s) is just  0

s 
d . 

What is the steady-state error in response to a constant-frequency input? 

ω0        cos(ω t)              ramp in phase s20
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Steady-state error, then, is 
lim ω �lim lim ω �0t—>∞ φ (t) = s —> 0 s  · = s —> 0 s

0 
�+      k ke 0 ds2 �+C(s) s 

ω= 0 
k k0 d 

=> Large k k  for small phase error. But according to root locus, 0 d

jω 

σ× 

Large k k  also means large bandwidth. If we have a noisy reference, large bandwidth is not 0 d
a good thing. 

We can improve things by being more sophisticated in our choice of F(s): 

F(s) = � => L(s) = k 
τs + � s(sτ + �) 

ω
Steady state error is still  k

0 , but bandwidth is reduced: 

-90˚ 

-�80˚ 

0 
�/τ ωC ωC ' 

ω 

log |L| 

∡L(s) 

��˚ 
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Now we’ve got our improved noise performance, but increasing k will lower our damping ratio: 

jω 

σ×× 

Put another way, increasing k will lower our phase margin.

=> we must decide what stability margins are acceptable in our application.


Suppose we decide that a 2�% overshoot in the step response is acceptable. Using our chart of 

2ns order parameters, we discover that this corresponds to ζ = 0.� and Mp = �.�. This means we 

should design for a phase margin of


M  ≈ � 
p sinφm 

φn ≈ sin-� ( � ) ≈ ��˚ m p 

We arrange for this by ensuring that |L| = � at the frequency for which ∡L(s) = -�3�˚. Looking 
at our Bode Plot, we see that this frequency is just ω = �/τ. On the asymptotic magnitude plot, 

k kτ|L(s)| at this frequency is   �/ τ  =kτ. The actual magnitude is  √2 . 

We therefore choose k using 

kτ √2 = � => k = √2 τ 
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