Recitation 14: Bode Obstacle Course Prof. Joel L. Dawson

Now we're moving into the part of the course that for many of you will be the most fun: design of feedback systems.

Problem: How do we translate closed-loop specifications into specifications on our loop transmission?

CLASS EXERCISE:

Let's say that you're asked to control a plant as shown:

Requirements:

- 1. Zero steady-state error in response to a step
- 2. Loop crossover ω_c no higher than 100 rps.

 \rightarrow Design a compensator H(s) that meets these specifications.

Specs that we care about in feedback systems

6.302 Feedback Systems Recitation 14: Bode Obstacle Course

Prof. Joel L. Dawson

1) Command following \Rightarrow the extent to which

$$\frac{C(s)}{R(s)} = \frac{L(s)}{1+L(s)} \approx 1$$

Good command following requires that $|L(j\omega)| >> 1$ over the frequency range of interest.

2) Small steady-state error/small dynamic tracking error

$$\Rightarrow$$
 extent to which $\frac{E(s)}{R(s)} = \frac{1}{1 + L(s)} << 1$

requires that $|L(j\omega)| >> 1$ over frequency range of interest.

3) Disturbance Rejection

EXAMPLE: Rocket sled buffeted by wind.

The wind in this case is a disturbance that we would like to reject.

Returning to general case, we want $\frac{C(s)}{D(s)}$ to be small, so disturbance rejection is the extent to which

$$\frac{C(s)}{D(s)} = \frac{1}{1 + L(s)} \ll 1 \qquad \longrightarrow \text{ want } |L(j\omega)| >> 1 \text{ over freq. range of interest.}$$

4) Noise Rejection

Our sensors aren't perfect: they give us the data that we want, plus some noise. Noise is always specified as a spectral density, e.g. the noise voltage associated with a resistor is $4kTR\Delta f$. The larger the bandwidth of your system, the larger the RMS noise voltage you're going to see at your output.

 \rightarrow This is one reason why extra bandwidth is bad \leftarrow

since $\frac{C(s)}{N(s)} = \frac{L(s)}{1 + L(s)}$, we want $|L(j\omega)| <<1$ <u>outside</u> the frequency band of interest.

Bode Obstacle Course

Command-following and disturbance-rejection requirements produce inequalities like:

$$|L(j\omega)| > A$$
, for $\omega < \omega_1$

Noise rejection specs might be given as

 $|L(j\omega)| < A_2$, for $\omega > \omega_2$

We can draw a Bode Obstacle course as follows (see next page):

6.302 Feedback Systems

Recitation 14: Bode Obstacle Course Prof. Joel L. Dawson

DESIGN EXAMPLE:

Design in acceptable L(s) that results in the following closed-loop performance specs:

- 1. Steady-state error in response to a ramp less than 10^{-2}
- 2. Disturbance rejection better than 10:1 for frequencies below 10 rps
- 3. Closed-loop bandwidth > 50 rps
- 4. Magnitude peaking Mp<1.4
- 5. Noise rejection better than 40dB above 1000 rps

How does this guide our design?

1. Steady-state error in response to a ramp is <u>bounded</u>, but not zero. This implies a pole @ origin.

$$\overset{lim}{s \to 0} \quad \mathscr{S}\left(\frac{1}{s^{\mathscr{I}}}\right) \frac{1}{1 + \frac{k}{s}} F(s) = \overset{lim}{s \to 0} \frac{1}{\mathscr{S}} \frac{\mathscr{I}}{1 + kF(s)}$$
$$= \frac{1}{1 + kF(0)}$$

Page 4

6.302 Feedback Systems Recitation 14: Bode Obstacle Course

Recitation 14: Bode Obstacle Course Prof. Joel L. Dawson

For F(s), if there are no singularities at the origin, we are free to assume F(0) = 1. As we fill in the details of F(s), we do so in the following fashion.

$$F(s) = \frac{(\tau_{z1}s+1) (\tau_{z2}s+1) \cdots (\tau_{zN}s+1)}{(\tau_{p1}s+1) (\tau_{p2}s+1) \cdots (\tau_{pm}s+1)} = \frac{\prod_{j=1}^{N} (\tau_{zj}s+1)}{\prod_{j=1}^{M} (\tau_{pj}s+1)}$$
This way, F(0)=1.
1) $\rightarrow \frac{1}{1+k} < 0.01 \rightarrow k > 100$
2) $\rightarrow |L(j\omega)| > 10$ for $\omega < 10$ rps
3) $\rightarrow \omega_{c} > 50$ rps
4) $\rightarrow \phi_{m} > 45^{\circ}$
5) $\rightarrow |L(j\omega)| < 0.01$ for $\omega > 10^{3}$ rps
As a first stab, let's try L(s) = 100/s

Page 5

6.302 Feedback Systems

Recitation 14: Bode Obstacle Course Prof. Joel L. Dawson

What to do? We need another pole somewhere in order to meet our high-frequency spec. But if we put the pole too low (in frequency), we'll lower ω_c and our phase margin.

What about a pole right at 100 rps? Using aymptotes on the Bode Plot, that would fix ω_c right at 100 rps, and the phase margin would be 45°....

Try L(s) =
$$\frac{100}{s(0.01s+1)}$$

Actual numbers: $\omega_{\rm C} \approx 80$ rps, $\phi_{\rm m} \approx 50$ rps

Page 6