Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.432 STOCHASTIC PROCESSES, DETECTION AND ESTIMATION

Problem Set 2

Spring 2004

Issued: Tuesday, February 10, 2004

Due: Thursday, February 19, 2004

Reading: For this problem set: Chapter 2, through Section 2.5.1 Next: Chapter 2, Chapter 3 through Section 3.2.4

Problem 2.1

Let x and y be statistically independent random variables with probability density functions

$$p_{\mathsf{x}}(x) = \frac{1}{2}\delta(x+1) + \frac{1}{2}\delta(x-1)$$

and

$$p_{\mathbf{y}}(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right),$$

and let z = x + y, and w = xy.

- (a) Find $p_z(z)$, the probability density function for z.
- (b) Find the conditional probability density functions $p_{z|x}(z \mid x = -1)$ and $p_{z|x}(z|x = 1)$.
- (c) Find the mean values $\bar{x} = m_x$ and $\bar{y} = m_y$, the variances σ_y^2 and σ_w^2 , and the covariance λ_{yw} . Are y and w uncorrelated random variables? Are y and w statistically independent random variables?
- (d) Are y and w Gaussian random variables? Are they jointly Gaussian? Explain.

Problem 2.2

Let x_1 and x_2 be zero-mean jointly Gaussian random variables with covariance matrix

$$\mathbf{\Lambda}_{\mathbf{x}} = \begin{bmatrix} 34 & 12\\ 12 & 41 \end{bmatrix}.$$

- (a) Verify that $\Lambda_{\mathbf{x}}$ is a valid covariance matrix.
- (b) Find the marginal probability density for x_1 . Find the probability density for $y = 2x_1 + x_2$.

(c) Find a linear transformation defining two new variables

$$\left[\begin{array}{c} \mathbf{x}_1'\\ \mathbf{x}_2' \end{array}\right] = \mathbf{P} \left[\begin{array}{c} x_1\\ x_2 \end{array}\right]$$

so that x'_1 and x'_2 are statistically independent and so that

$$\mathbf{P}\mathbf{P}^T = \mathbf{I},$$

where **I** is the 2×2 identity matrix.

Problem 2.3 (practice)

Let \mathbf{x} be an N-dimensional zero-mean random vector whose covariance matrix has eigenvalues

$$\lambda_1 > \lambda_2 > \cdots > \lambda_N,$$

and corresponding eigenvectors

$$\phi_1, \phi_2, \cdots, \phi_N.$$

Suppose we wish to approximate \mathbf{x} as a scalar random variable b times a deterministic N-dimensional vector \mathbf{a} (i.e., $b\mathbf{a}$). This problem concerns finding the "best" b and \mathbf{a} .

(a) Let

$$b_{ ext{opt}} = rgmin_{oldsymbol{b} \in \mathbb{R}} \|oldsymbol{x} - oldsymbol{b} \mathbf{a}\|,$$

where $\|\cdot\|$ is the Euclidean norm for \mathbb{R}^N , i.e., $\|\mathbf{z}\|^2 = \mathbf{z}^T \mathbf{z}$. Find an explicit expression for b_{opt} in terms of \mathbf{x} and \mathbf{a} . Note that b_{opt} is a random variable.

(b) Let b_{opt} be as defined in part (a). Now define

$$\mathbf{a}_{\text{opt}} = \operatorname*{arg\,min}_{\mathbf{a} \in \mathbb{R}^N} E[\|\mathbf{x} - \mathbf{b}_{\text{opt}}\mathbf{a}\|^2].$$

Show that

$$\mathbf{a}_{\text{opt}} = rg\max_{\mathbf{a}} \frac{\operatorname{var}\left[\mathbf{a}^T\mathbf{x}\right]}{\mathbf{a}^T\mathbf{a}}.$$

(c) Determine

$$\max_{\mathbf{a}} \frac{\operatorname{var}\left[\mathbf{a}^{T}\mathbf{x}\right]}{\mathbf{a}^{T}\mathbf{a}}$$

and indicate the value(s) of **a** for which the maximum is achieved.

(d) Repeat part (c) when we impose the constraint that

$$\mathbf{a} \perp \phi_i$$
 (i.e., $\mathbf{a}^T \phi_i = 0$) for $i = 1, 2, \cdots, k-1$,

for some $k \ge 2$. Again, indicate the value(s) of **a** for which the maximum is achieved.

Problem 2.4

Suppose x and y are random variables. Their joint density, depicted below, is constant in the shaded area and 0 elsewhere.

- (a) Let $H = H_0$ when $x \leq 0$, and let $H = H_1$ when x > 0. Determine $P_0 = \Pr[H = H_0]$ and $P_1 = \Pr[H = H_1]$, and make fully labelled sketches of $p_{y|H}(y|H_0)$ and $p_{y|H}(y|H_1)$.
- (b) Construct a rule $\hat{H}(y)$ for deciding between H_0 and H_1 given an observation y = y that minimizes the probability of error. Specify for which values of y your rule chooses H_1 , and for which values it chooses H_0 . That is, determine the regions

$$\begin{aligned} \mathcal{Z}_0 &= \{ y \mid \dot{H}(y) = H_0 \} \\ \mathcal{Z}_1 &= \{ y \mid \dot{H}(y) = H_1 \}. \end{aligned}$$

What is the resulting probability of error?

Problem 2.5

In the binary communication system shown in Fig. 5-1, messages m = 0 and m = 1 occur with a priori probabilities 1/4 and 3/4 respectively. Suppose that we observe r,

$$r = n + m$$
,

where n is a continuous valued random variable with the pdf shown in Fig. 5-2. The random variable n is statistically independent of whether message m = 0 or m = 1 occurs.

- (a) Find the minimum probability of error detector, and compute the associated probability of error, $\Pr[\hat{m} \neq m]$.
- (b) (practice) Suppose that the receiver does not know the a priori probabilities, so it decides to use a maximum likelihood (ML) detector. Find the ML detector and the associated probability of error. Is the ML detector unique? Justify your answer. If your answer is no, find a different ML receiver and the associated probability of error.

Problem 2.6

Consider the binary discrete-time communication system shown in Fig. 6-1. Assume that m = 0 and m = 1 are equally likely to occur. Under hypothesis H_m (m = 0, 1), the received signal r[n] is given by

$$r[n] = y_m[n] + w[n] = s_m[n] * h[n] + w[n],$$
 for all n ,

where "*" denotes convolution, and where the w[n]'s are zero-mean statistically independent Gaussian random variables with variance σ^2 . The two signals, $s_0[n]$ and $s_1[n]$ are shown in Figs. 6-2 and 6-3, respectively. The parameter λ in Fig. 6-3 satisfies $0 \leq \lambda \leq 1$. The impulse response of the linear time invariant filter h[n] is shown in Fig. 6-4.

We wish to obtain a rule for making a decision about which hypothesis was used, based on the observed sequence r[n].

- (a) Which samples of r[n] provide information in making the decision? Justify your reasoning.
- (b) Find the minimum probability of error decision rule, based on observation of r[n]. Simplify your processor as much as possible to minimize computation.

(c) Obtain an expression for $\Pr[\varepsilon]$ in terms of λ and $\mathcal{Q}(\cdot)$, where $\mathcal{Q}(\cdot)$ is defined as

$$\mathcal{Q}(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-\alpha^2/2} d\alpha.$$

(d) Find the values of λ (where $0 \leq \lambda \leq 1$) that minimize $\Pr[\varepsilon]$ for the detector obtained in part (b).

Problem 2.7 (practice)

Binary frequency shift keying (FSK) on a Rayleigh fading channel can be modeled in terms of a 4-dimensional observation vector

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix},$$

which is given by $\mathbf{y} = \mathbf{x} + \mathbf{z}$, where $\mathbf{z} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$ and \mathbf{z} is independent of \mathbf{x} . Under $\mathbf{H} = H_0$,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ 0 \end{bmatrix}$$

whereas under $H = H_1$,

$$\mathbf{x} = \begin{bmatrix} 0\\0\\x_3\\x_4\end{bmatrix}$$

The x_i are independent, identically-distributed (IID) $N(0, \alpha^2)$ random variables. Furthermore, the two hypotheses are equally likely.

- (a) Show that the ML receiver calculates $v_0 = y_1^2 + y_2^2$ and $v_1 = y_3^2 + y_4^2$, and chooses $\hat{H} = H_0$ if $v_0 \ge v_1$, and chooses $\hat{H} = H_1$ otherwise.
- (b) Find $p_{v_0|H}(v_0|H_0)$ and $p_{v_1|H}(v_1|H_0)$.
- (c) Let $u = v_0 v_1$, and find $p_{u|H}(u|H_0)$.
- (d) Show that

$$\Pr\left[\varepsilon|\mathcal{H}=H_0\right] = \frac{1}{2 + \frac{\alpha^2}{\sigma^2}},$$

where ε denotes the error event $\hat{H} \neq H$. Explain why this is also the unconditional probability of an incorrect decision.

Problem 2.8

In the binary communications system shown below, messages m = 0 and m = 1 occur with a priori probabilities $\frac{1}{4}$ and $\frac{3}{4}$ respectively. The random variable n is independent from m and takes on the values -1, 0, 1 with probabilities $\frac{1}{8}$, $\frac{3}{4}$, $\frac{1}{8}$ respectively

Figure 8-1

Find the receiver which achieves the maximum probability of correct decision. Compute the probability of error for this receiver.