Problem Set 1 Solutions

Problem 1

$$\Delta P \approx \frac{\rho U^2}{2A^2} \tag{1}$$

(a) From the information given, we know that

 $\Delta P = 7 \text{ cm } \text{H}_2\text{O} = 7 \text{ x } 980 \text{ dyne/cm}^2 = 6860 \text{ dyne/cm}^2$ $U_{\text{max}} = 600 \text{ cm}^3/\text{sec}$ $\rho = 0.00114 \text{ gm/cm}^3$ $A_{\text{max}} = l \text{ x } w$ l = 1.0 cmw = (unknown) glottal width

we first calculate A_{max} by plugging in all the known numbers into equation(1),

$$A_{\rm max} = \sqrt{\frac{\rho \,\mathrm{U}^2}{2 \cdot \Delta \mathrm{P}}} = 0.173 \,\mathrm{cm}^2$$

we then calculate the glottal width, knowing what Amax is and get

maximum glottal width = w = 0.173 cm

(b)

$$\Delta \mathbf{P} = \frac{\rho \mathbf{U}^2}{2\mathbf{A}^2} + \frac{12\mu \mathbf{U}d}{ba^3} \tag{2}$$

 $\mu = 1.94 \times 10^{-4} \text{ dyne-sec/cm}^2$ a = width of glottis = 0.173 cm (from part a) b = horizontal length of glottis = 1.0 cm d = vertical length of glottis = 0.3 cmA = ab

Plugging all the values into the second term of equation(2), we get

 ΔP (second term) = 80.931 dyne/cm² This viscosity term accounts for $\frac{80.931}{6860} \cdot 100\% = 1.18\%$ of the entire ΔP , which is not significant here.

Problem 2

Figure 1

$$\Delta \mathbf{P} \approx \frac{\rho \mathbf{U}^2}{2\mathbf{A}^2} \tag{3}$$

(a)

First, remember all pressures are given relative to the atmospheric pressure. From the problem, we know that

 P_s = subglottal pressure = 6 cm H₂O = 6 x 980 dynes/cm² = 5880 dynes/cm² A_g = glottal constriction area = 0.2 cm² A_c = constriction area at palate = 0.1 cm² ρ = 0.00114 gm/cm³

From Figure 1, we see that

 ΔP_1 = pressure drop across the glottis = $P_s - P$ ΔP_2 = pressure drop across the constriction at palate = P - P_{atm}

$$\Rightarrow \Delta P_1 + \Delta P_2 = P_s - P + P - P_{atm} = P_s - P_{atm} = 5880 \text{ dyne/cm}^2$$

Using equation(3), we can calculate U since all the other variables are known:

$$\Delta P_{1} + \Delta P_{2} = \frac{\rho U^{2}}{2A_{g}^{2}} + \frac{\rho U^{2}}{2A_{c}^{2}} = 6 \text{ cm } H_{2}O = 5880 \text{ dyne/cm}^{2}$$
(4)
$$U = \sqrt{\left[\frac{1}{A_{g}^{2}} + \frac{1}{A_{c}^{2}}\right]^{-1}} \cdot \frac{5880 \cdot 2}{\rho}$$

 $U = 287.274 \text{ cm}^3/\text{s}$

(b)

From Figure 1, we see that

$$P = P_{s} - \Delta P_{1}$$

$$= P_{s} - \frac{\rho U^{2}}{2A_{g}^{2}} \qquad (U \text{ is calculated in part (a), and the rest are given information})$$

$$= 5880 \text{ dynes/cm}^{2} - 1176 \text{ dynes/cm}^{2}$$

$$P = 4703 \text{ dynes/cm}^{2} = 4.799 \text{ cm H}_{2}O$$

(c)

Method 1:

The threshold pressure drop across the glottis for vibration to occur is $\Delta P_1 = 3 \text{ cm } H_2 O$.

Using equation(4) again, we get $\Delta P_2 = 3 \text{ cm } H_2O$.

We can then calculate the new volume velocity U_{new} by using the relation

$$\Delta P_2 = \frac{\rho U_{\text{new}}^2}{2A_c^2} = 3 \text{ cm } H_2 O$$

=> U_{new} = 227.11 cm³/s

Since the volume velocity is equal at the two constrictions, we obtain the final answer A_g by using the same relation,

$$\Delta P_1 = \frac{\rho U_{\text{new}}^2}{2A_g^2} = 3 \text{ cm } H_2 O$$

 $A_{g} = 0.1 \text{ cm}^{2}$

Method 2:

We know $\Delta P_1 = \Delta P_2 = 3 \text{ cm H}_2\text{O}$, and that the volume velocity, U, through the two constrictions is the same. From the $\Delta P = \frac{\rho U^2}{2A^2}$ equation, A_g must be equal to A_c in order for the two pressure drops to be equal.

$$A_{g} = 0.1 \text{ cm}^{2}$$

Problem 3

(3)	Phonation stops, and bubbles persist:	depth: 3-4 cm
	Phonation stops, and bubbles stop:	depth: 7-9 cm

When both phonation and bubbles stop, it means the subglottal pressure is equivalent to the pressure above the straw level. Thus, the subglottal pressure is approximately $\overline{7-9 \text{ cm } \text{H}_2 \text{O}}$. The transglottal pressure (P_s - P_m) at the threshold of phonation, when phonation stops but bubbles persist, is approximately $\overline{3-5 \text{ cm } \text{H}_2 \text{O}}$.

(4) Possible sources of error:

 -a constant subglottal pressure might not be maintained during experiment.
 -imprecise measurement of water depths.

Problem 4

1	>
1.	٦ ١
12	11
••	~,

1. length	['leŋ0]	=>	['lɛŋθ]
2. claim	['clem]	=>	['klem]
3. them	['θm]	=>	['ðm]
4. strives	['straivs]	=>	['straivz]
5. fishing	['fɪshɪŋ]	=>	['fɪšɪŋ]
6. enjoy	[ənˈjoi]	=>	[ən′j̃ɔi]
7. bellow	[′bɛl <mark>l</mark> o]	=>	[′bɛlo]
8. damage	['dæmæj]	=>	[′dæmɛj̆]
9. depreciate	[də'pre šiet]	=>	[də'pri šiet]
10. avoid	[æ′vɔid]	=>	[ə'vɔid]
11. recall	[ri'kol]	=>	[ri'kɔl]
12. contain	[kən'tan]	=>	[kən'ten]

13. pleasure	['plɛzer]	=>	['plɛžə]			
14. exemption	[əx 'ɛmpšən]	=>	[əgz 'ɛmpšən]			
15. thorough	[′ðୖ୶୦]	=>	[′θəo]			
16. protrude	[pro'trUd]	=>	[pro'trud]			
17. inhumane	[Inhu'men]	=>	[Inhju'men]			
18. understanding [undə'stændıŋ] =>[Andə'stændıŋ]						
19. insight	['Insit]	=>	['Insait]			
20. tiptoe	['tipto]	=>	['tɪpto]			
21. doomsday	['domzde]	=>	['dumzde]			

(b)

When the sunlight strikes raindrops in the air, they act like a ['wɛn] ['ðə] ['sʌnlait] ['straiks] ['rendrops] ['ɪn] ['ði] ['ɛə-], ['ðe] ['æk] ['laik] [ə]

prizm and form a rainbow. ['prizm] ['ə(n)] ['fɔrm] ['ə] ['renbo]

(c)

my name is pronounced xuemin chi. ['mαi] ['nem] ['iz] [prə'nαunst] [šə'min] ['či].