Problem Set 1 Solutions

Problem 1

$$
\begin{equation*}
\Delta \mathrm{P} \approx \frac{\rho \mathrm{U}^{2}}{2 \mathrm{~A}^{2}} \tag{1}
\end{equation*}
$$

(a) From the information given, we know that
$\Delta \mathrm{P}=7 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}=7 \times 980$ dyne $/ \mathrm{cm}^{2}=6860$ dyne $/ \mathrm{cm}^{2}$
$\mathrm{U}_{\text {max }}=600 \mathrm{~cm}^{3} / \mathrm{sec}$
$\rho=0.00114 \mathrm{gm} / \mathrm{cm}^{3}$
$\mathrm{A}_{\text {max }}=l \mathrm{x} w$
$l=1.0 \mathrm{~cm}$
$w=$ (unknown) glottal width
we first calculate $\mathrm{A}_{\max }$ by plugging in all the known numbers into equation(1),

$$
\mathrm{A}_{\max }=\sqrt{\frac{\rho \mathrm{U}^{2}}{2 \cdot \Delta \mathrm{P}}}=0.173 \mathrm{~cm}^{2}
$$

we then calculate the glottal width, knowing what $\mathrm{A}_{\text {max }}$ is and get
maximum glottal width $=w=0.173 \mathrm{~cm}$
(b)

$$
\begin{equation*}
\Delta \mathrm{P}=\frac{\rho \mathrm{U}^{2}}{2 \mathrm{~A}^{2}}+\frac{12 \mu \mathrm{U} d}{b a^{3}} \tag{2}
\end{equation*}
$$

$\mu=1.94 \times 10^{-4}$ dyne-sec $/ \mathrm{cm}^{2}$
$a=$ width of glottis $=0.173 \mathrm{~cm}$ (from part a)
$b=$ horizontal length of glottis $=1.0 \mathrm{~cm}$
$d=$ vertical length of glottis $=0.3 \mathrm{~cm}$
$\mathrm{A}=a b$
Plugging all the values into the second term of equation(2), we get

$$
\begin{aligned}
& \Delta \mathrm{P}(\text { second term })=80.931 \text { dyne } / \mathrm{cm}^{2} \\
& \text { This viscosity term accounts for } \frac{80.931}{6860} \cdot 100 \%=1.18 \% \text { of the entire } \Delta \mathrm{P} \text {, which is } \\
& \text { not significant here. }
\end{aligned}
$$

Problem 2

Figure 1

$$
\begin{equation*}
\Delta \mathrm{P} \approx \frac{\rho \mathrm{U}^{2}}{2 \mathrm{~A}^{2}} \tag{3}
\end{equation*}
$$

(a)

First, remember all pressures are given relative to the atmospheric pressure.
From the problem, we know that
$\mathrm{P}_{\mathrm{s}}=$ subglottal pressure $=6 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}=6 \times 980$ dynes $/ \mathrm{cm}^{2}=5880$ dynes $/ \mathrm{cm}^{2}$
$\mathrm{A}_{\mathrm{g}}=$ glottal constriction area $=0.2 \mathrm{~cm}^{2}$
$\mathrm{A}_{\mathrm{c}}=$ constriction area at palate $=0.1 \mathrm{~cm}^{2}$
$\rho=0.00114 \mathrm{gm} / \mathrm{cm}^{3}$
From Figure 1, we see that
$\Delta \mathrm{P}_{1}=$ pressure drop across the glottis $=\mathrm{P}_{\mathrm{s}}-\mathrm{P}$
$\Delta \mathrm{P}_{2}=$ pressure drop across the constriction at palate $=\mathrm{P}-\mathrm{P}_{\mathrm{atm}}$
$\Rightarrow \Delta \mathrm{P}_{1}+\Delta \mathrm{P}_{2}=\mathrm{P}_{\mathrm{s}}-\mathrm{P}+\mathrm{P}-\mathrm{P}_{\mathrm{atm}}=\mathrm{P}_{\mathrm{s}}-\mathrm{P}_{\mathrm{atm}}=5880$ dyne $/ \mathrm{cm}^{2}$

Using equation(3), we can calculate U since all the other variables are known:
$\Delta \mathrm{P}_{1}+\Delta \mathrm{P}_{2}=\frac{\rho \mathrm{U}^{2}}{2 \mathrm{~A}_{g}{ }^{2}}+\frac{\rho \mathrm{U}^{2}}{2 \mathrm{~A}_{c}{ }^{2}}=6 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}=5880$ dyne $/ \mathrm{cm}^{2}$
$\mathrm{U}=\sqrt{\left[\frac{1}{\mathrm{~A}_{g}{ }^{2}}+\frac{1}{\mathrm{~A}_{c}{ }^{2}}\right]^{-1} \cdot \frac{5880 \cdot 2}{\rho}}$
$\mathrm{U}=287.274 \mathrm{~cm}^{3} / \mathrm{s}$
(b)

From Figure 1, we see that

$$
\begin{aligned}
\mathrm{P} & =\mathrm{P}_{\mathrm{s}}-\Delta \mathrm{P}_{1} \\
& =\mathrm{P}_{\mathrm{s}}-\frac{\rho \mathrm{U}^{2}}{2 \mathrm{~A}_{g}{ }^{2}} \quad(\mathrm{U} \text { is calculated in part (a), and the rest are given information) } \\
& =5880 \text { dynes } / \mathrm{cm}^{2}-1176 \text { dynes } / \mathrm{cm}^{2} \\
\mathrm{P} & =4703 \text { dynes } / \mathrm{cm}^{2}=4.799 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(c)

Method 1:

The threshold pressure drop across the glottis for vibration to occur is $\Delta \mathrm{P}_{1}=3 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.

Using equation(4) again, we get $\Delta \mathrm{P}_{2}=3 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
We can then calculate the new volume velocity $\mathrm{U}_{\text {new }}$ by using the relation

$$
\begin{aligned}
\Delta \mathrm{P}_{2}= & \frac{\rho \mathrm{U}_{\text {new }}{ }^{2}}{2 \mathrm{~A}_{c}{ }^{2}}=3 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} \\
& \Rightarrow \mathrm{U}_{\text {new }}=227.11 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

Since the volume velocity is equal at the two constrictions, we obtain the final answer A_{g} by using the same relation,

$$
\Delta \mathrm{P}_{1}=\frac{\rho \mathrm{U}_{\text {new }}{ }^{2}}{2 \mathrm{~A}_{g}{ }^{2}}=3 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{A}_{\mathrm{g}}=0.1 \mathrm{~cm}^{2}
$$

Method 2:

We know $\Delta \mathrm{P}_{1}=\Delta \mathrm{P}_{2}=3 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$, and that the volume velocity, U , through the two constrictions is the same. From the $\Delta \mathrm{P}=\frac{\rho \mathrm{U}^{2}}{2 \mathrm{~A}^{2}}$ equation, A_{g} must be equal to A_{c} in order for the two pressure drops to be equal.

$$
\mathrm{A}_{\mathrm{g}}=0.1 \mathrm{~cm}^{2}
$$

Problem 3

(3) Phonation stops, and bubbles persist: Phonation stops, and bubbles stop:
depth: $3-4 \mathrm{~cm}$
depth: 7-9 cm

When both phonation and bubbles stop, it means the subglottal pressure is equivalent to the pressure above the straw level. Thus, the subglottal pressure is approximately $7-9 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$. The transglottal pressure $\left(\mathrm{P}_{\mathrm{s}}-\mathrm{P}_{\mathrm{m}}\right)$ at the threshold of phonation, when phonation stops but bubbles persist, is approximately $3-5 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$.
(4) Possible sources of error:
-a constant subglottal pressure might not be maintained during experiment. -imprecise measurement of water depths.

Problem 4

(a)

1. length	[${ }^{\text {leng } \theta \text {] }}$	=>	[${ }^{1}$ ¢g θ]
2. claim	['clem]	=	['klem]
3. them	[${ }^{6} \mathrm{~m} \mathrm{~m}$]	=>	[‘ðm]
4. strives	['straivS]	=>	['straivz]
5. fishing	['fıshıy]	=>	['fišın]
6. enjoy	[ən'joi]	=>	[ən'jّจi]
7. bellow	['bello]	=>	['belo]
8. damage	['dæmæj]	=>	
9. depreciate	[də'pre šiet]	=>	[də'pri šiet]
10. avoid	[æ'void]	=>	[ə'void]
11. recall	[$\mathrm{r}^{\prime} \mathrm{kog}$]]	=>	[$\mathrm{ri}^{\prime} \mathrm{kol}$]
12. contain	[kən'tan]	=>	[kən'ten]

13. pleasure ['plezer] \quad ['pl ε ž γ]
14. exemption [əX $\left.{ }^{\prime} \varepsilon m p s ̌ ə n\right] \quad$ [əgz ' $\left.\varepsilon m p s ̌ ə n\right]$
15. thorough ['ひ $\quad \mathrm{O} \mathrm{o}$] \quad [' $\theta \curvearrowright \mathrm{o}$]
16. protrude [pro'trUd] \quad [pro'trud]
17. inhumane [inhu'men] \Rightarrow [inhju'men]
18. understanding [undr'stændıy] $=>$ [Λ ndr'stændıy]
19. insight ['insilt] \quad ['insait]
20. tiptoe ['tipto] \quad ['tipto]
21. doomsday ['domzde] $\quad>\quad$ ['dumzde]
(b)

When the sunlight strikes raindrops in the air, they act like a ['wen] ['ðə] ['s \wedge nlגit] ['straiks] ['rendrops] ['ın] ['ði] ['モə'], ['ðe] ['æk] ['laik] [ə]
prizm and form a rainbow.
['prızm] ['ə(n)] ['form] ['ə] ['renbo]
(c)
my name is pronounced xuemin chi.
['moi] ['nem] ['iz] [prə'nounst] [šə'min] ['či].

