Problem Set 2 Solutions

Problem 1

(a) False

Contraction of the lower fibers of the genioglossus muscle increases the crosssectional area of the pharynx. (pg 15-16)
(b) True.

The tension on the vocal folds is increased by contracting the cricothyroid muscle. (pg 7-8)
(c) True

The mandible is usually in a higher position for the sound /s/ than for the sound /i/. (try it)
(d) False

On average, the ratio of the length of the oral cavity to the length of the pharyngeal cavity is greater for adult females than for adult males. (pg 24-25)
(e) False

Contraction of the sternohyoid muscle pulls the larynx downwards. (pg 13-14)
(f) False

Downward displacement of the larynx results in a shortening of the vocal folds. (pg13-14)
(g) True

The cross-sectional area of the vocal tract is greater in the pharyngeal region for the vowel $/ \mathrm{i} /$ than it is for the vowel $/ \alpha /$. (pg 16-17)

Problem 2

Recall the following relations from lecture:
1-Dimensional Wave Equation: $\frac{d^{2} p(x)}{d x^{2}}=-k^{2} p(x), \quad$ where $k=\frac{\omega}{c}$

Newton's Law:

$$
\begin{equation*}
\frac{d p(x)}{d x}=-\frac{j \omega \rho}{A} U(x) \tag{2}
\end{equation*}
$$

We also have the following boundary conditions:
$\mathrm{p}(\mathrm{x}=0 \mathrm{~cm})=0$ dyne $/ \mathrm{cm}^{2}$
$|\mathrm{U}(\mathrm{x}=-17 \mathrm{~cm})|=\mathrm{U}_{\mathrm{s}}=100 \mathrm{~cm}^{3} / \mathrm{s}$

1) Knowing that $p(x)$ is a sinusoid, based on the first boundary condition, we guess a solution for $p(x)$ of the form $p(x)=P_{m} \sin (\alpha x)$. We have to figure out what P_{m} and α are.
2) By plugging our guessed solution into equation (1), we can get α.

$$
\begin{aligned}
& \frac{d^{2} p(x)}{d x^{2}}=-\alpha^{2} P_{m} \sin (\alpha x) \\
& -\alpha^{2} P_{m} \sin (\alpha x)=-\left(\frac{\omega}{c}\right)^{2} P_{m} \sin (\alpha x) \\
&
\end{aligned} \quad \begin{aligned}
& \quad>\alpha=\frac{\omega}{c}
\end{aligned}
$$

we now have $\mathrm{p}(\mathrm{x})=\mathrm{P}_{\mathrm{m}} \sin \left(\frac{\omega}{c} \mathrm{x}\right)$
3) Using equation(2), we get

$$
U(x)=-\frac{A}{j \omega \rho} \frac{d p(x)}{d x}=-\frac{A}{j \omega \rho}\left(\frac{\omega}{c}\right) P_{m} \cos \left(\frac{\omega}{c} x\right)
$$

4) Applying the second boundary condition, we have

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{s}}=|\mathrm{U}(\mathrm{x}=-17 \mathrm{~cm})|=100 \mathrm{~cm}^{3} / \mathrm{s} \\
& \mathrm{U}_{\mathrm{s}}=\left\lvert\, \frac{j A}{\rho c} P_{m} \cos \left(\left.\frac{\omega}{c}(-17 \mathrm{~cm}) \right\rvert\,\right.\right.
\end{aligned}
$$

$$
\Rightarrow \mathrm{P}_{\mathrm{m}}=\frac{U_{s} \rho c}{A \cdot\left|\cos \left(\frac{\omega}{c}(-17 \mathrm{~cm})\right)\right|}
$$

5) Finally, to solve for P_{1}, where $P_{1}=|p(x=-17 \mathrm{~cm})|$, we plug in all the values, and get

$$
\begin{array}{r}
\mathrm{P}_{1}=\left|P_{m} \sin \left(\frac{\omega}{c}(-17 \mathrm{~cm})\right)\right|=\frac{U_{s} \rho c}{A} \tan \left(\frac{\omega}{c}(17 \mathrm{~cm})\right) \\
=\frac{\left(100 \mathrm{~cm}^{3} / \mathrm{s}\right)\left(0.00114 \mathrm{~g} / \mathrm{cm}^{3}\right)(35400 \mathrm{~cm} / \mathrm{s})}{4 \mathrm{~cm}^{2}} \tan \left(\frac{2 \pi(400 \mathrm{~Hz})(17 \mathrm{~cm})}{35400 \mathrm{~cm} / \mathrm{s}}\right) \\
\Rightarrow \quad \mathrm{P}_{1}=2649.335 \text { dynes } / \mathrm{cm}^{2}
\end{array}
$$

Problem 3

a) $\quad \mathrm{F}=\frac{c}{4 l}, \frac{3 c}{4 l}, \frac{5 c}{4 l}, \frac{7 c}{4 l}$, where $\mathrm{c}=354000 \mathrm{~cm} / \mathrm{s}, l=15 \mathrm{~cm}$

$$
\mathrm{F} 1=590 \mathrm{~Hz}, \quad \mathrm{~F} 2=1770 \mathrm{~Hz}, \quad \mathrm{~F} 3=2950 \mathrm{~Hz}, \quad \mathrm{~F} 4=4130 \mathrm{~Hz}
$$

b) $\quad \mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{R}}=0$

$$
-j \frac{\rho c}{A} \cot \left(\frac{2 \pi f}{c} l\right)+j 2 \pi f \frac{\rho l_{c}}{A_{c}}=0 \quad \text { where } \begin{aligned}
& A_{c}=2 \mathrm{~cm}^{2} \\
& l=15 \mathrm{~cm} \\
& l_{c}=2 \mathrm{~cm}
\end{aligned}
$$

Using Matlab to solve for f (refer to the script attached), we get $F 1=469.22 \mathrm{~Hz}, \mathrm{~F} 2=1467.3 \mathrm{~Hz}$, which makes sense qualitatively, because a lengthened tube would have lower natural frequencies.
c)
i) $\tan x \cong \frac{1}{\frac{\pi}{2}-x}$ when $x \cong \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}$, etc..

For F1 $=590 \mathrm{~Hz}: \frac{\rho c}{A} \cdot \frac{1}{\frac{\pi}{2}-\frac{\omega \ell}{c}} \cong-\omega_{1} \frac{\rho \ell_{c}}{A_{c}}$,

$$
\begin{array}{ll}
& A=4 \mathrm{~cm}^{2} \\
& A_{c}=0.02 \mathrm{~cm}^{2} \\
=>\omega=\left(\frac{\pi}{2}+\frac{A_{c} c}{A \varpi_{1} l_{c}}\right) \cdot \frac{c}{l} \quad \text { where } \quad \begin{array}{l}
l=15 \mathrm{~cm} \\
l_{c}=0.3 \mathrm{~cm} \\
F_{1}=590 \mathrm{~Hz}
\end{array} \\
2 \pi F_{1}{ }^{\prime}=\left(\frac{\pi}{2}+\frac{A_{c} c}{A 2 \pi F_{1} l_{c}}\right) \cdot \frac{c}{l} \quad \\
=>F_{1}^{\prime}=649.78 \mathrm{~Hz}
\end{array}
$$

Similarly for F2 $=1770 \mathrm{~Hz}$:

$$
2 \pi F_{2}^{\prime}=\left(\frac{3 \pi}{2}+\frac{A_{c} c}{A 2 \pi F_{1} l_{c}}\right) \cdot \frac{c}{l}
$$

$$
=F_{2}^{\prime}=1789.93 \mathrm{~Hz}
$$

We must also check to see if the tangent approximation is valid:

Natural Frequency	ExactTan	Tan. Approximation	Difference
649.78 Hz	-6.23	-6.28	0.05
1789.93 Hz	-18.83	-18.85	0.02

The approximation is valid and it gets better as frequency increases.
ii) From the attached graph, $F_{1}{ }^{\prime}=644.35 \mathrm{~Hz}$ and $F_{2}{ }^{\prime}=1789.7 \mathrm{~Hz}$ This is pretty close to what we get from (i).
iii) See attached MATLAB script. $F_{1}{ }^{\prime}=644.35 \mathrm{~Hz}$ and $F_{2}{ }^{\prime}=1789.7 \mathrm{~Hz}$,
d). Treating the small tube as a Helmholtz resonator since the dimensions are small compared with the wavelength, we know that the natural frequency is

$$
\begin{aligned}
& \mathrm{F}=\frac{c}{2 \pi} \cdot \sqrt{\frac{A_{c}}{l_{c} A(\Delta l)}} \quad, \text { where } \begin{array}{l}
A=4 \mathrm{~cm}^{2} \\
A_{c}=0.02 \mathrm{~cm}^{2} \\
l=15 \mathrm{~cm}
\end{array} \\
\Rightarrow & \Delta l=\left(\frac{c}{2 \pi F}\right)^{2} \cdot \frac{A_{c}}{A l_{c}}
\end{aligned}
$$

Setting $F=590 \mathrm{~Hz}$, the first natural frequency of the original tube, we get $\Delta l=1.52 \mathrm{~cm}$

A tube with a new length $l^{\prime}=l-\Delta l=13.48 \mathrm{~cm}$ has its lowest natural frequency of $F_{1}{ }^{\prime}=\frac{c}{4 l^{\prime}}=656.53 \mathrm{~Hz}$.

Similarly, setting F $=1770 \mathrm{~Hz}$, the second lowest natural frequency of the original tube, we get $\Delta l=0.169 \mathrm{~cm}$.

A tube with a new length $l^{\prime}=l-\Delta l=14.831 \mathrm{~cm}$ has its second lowest natural frequency of $F_{2}{ }^{\prime}=\frac{3 c}{4 l^{\prime}}=1790.17 \mathrm{~Hz}$.

These are pretty close to the exact solution we get in part (iii).
\%Problem 3b
\%script for calculating the first two resonant frequencies.
eq $=$ inline $\left({ }^{\prime}(2 * \mathrm{pi} * \mathrm{x} * 0.00114 * 2 / 2)-(0.00114 * 35400 / 4) * \cot \left(2 * \mathrm{p}_{\mathrm{i}} *_{\mathrm{x}} * 15 / 35400\right)^{\prime}\right)$;
F1 $=$ fsolve (eq, 591)
F2 $=$ fsolve (eq, 1770)

F1 =
469. 2180

F2 =

1. $4673 \mathrm{e}+03$

\%Problem 3c(ii)
\%This MATLAB script plots the impedances and solve for the natural frequencies \%graphically.
$1=15$;
$\mathrm{A}=4$;
$1 \mathrm{c}=0.3$;
$\mathrm{Ac}=0.02$;
rho $=0.00114$;
c $=35400$;
f $=1: 1: 5000 ;$
zL $=-2 * \mathrm{pi} * \mathrm{f} * \mathrm{rho} * \mathrm{lc} / \mathrm{Ac}$;
$\mathrm{zR}=(\mathrm{rho} * \mathrm{c} / \mathrm{A}) * \tan (2 * \mathrm{pi} * \mathrm{f} * \mathrm{l} / \mathrm{c})$;
plot (f, zL, ' --', f, zR, ' -') ;
title('Problem 3c(ii): Graphical Solution');
axis ([0 5000 -500 500]);
xlabel ('Frequency (Hz)') ;
ylabel (' Impedance') ;
legend (' $-z L$ ', ' $z R^{\prime}$);
\%zooming in on first resonant frequency
axis([644 $644.6-70-68])$
title('Problem 3c(ii): Graphical Solution for F1')
grid on;
\%zooming in on second resonant frequency axis([1789 1790-200-180])
title('Problem 3c(ii): Graphical Solution for F2')
```
%Problem 3c(iii)
%script for calculating the first two resonant frequencies.
eq = inline('(2*pi*x*0.00114*0.3/0.02) + (0.00114*35400/4)*tan(2*pi*x*15/35400)');
F1 = fsolve(eq, 591)
F2 = fsolve(eq, 1770)
F1 =
    644. }354
F2 =
    1.7897e+03
```

