
Lecture 3 Acoustics of Speech & Hearing 6.551/HST.714J 

Lecture 3:  Spherical Waves: Near & Far Field, Radiation Impedance, and Simple Sources 
 

Suggested Reading: Fletcher pg., 100-109, Chapter 7; Kinsler et al. Chapter 8 
 
I. Review of Wave Equations for Plane Waves 
 The one-dimensional wave equation for sound in a uniform plane wave, 

 ∂ 2 p(x, t)
∂x2 =

ρ0
B

∂ 2 p(x, t)
∂t2   , (3.1) 

can be solved in terms of two plane waves traveling in opposite direction: 
 p(x, t) = f+ t − x /c( )+ f− t + x /c( )  , (3.2) 

 vx (x,t) =
1
z0

f+ t − x /c( )− f− t + x /c([ ])   , and 

where:   z0 = BAρ0 = ρ0c , and c = BA
ρ0

   

 

Separating the time and space dependence in the sinusoidal steady state, where k=ω/c: 
p(x, t) = Re P(x)e jωt{ }; vx (x, t) = Re V (x)e jωt{ } ; (3.3) 

 P(x) = P+e− jkx + P−e jkx; V (x) =
1
z0

P+e− jkx − P−e jkx( );  

 I = p(t, x)vx (t,x) =
1
2

Re P(x)V *(x){ }=
1
2

P+ 2
− P− 2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

z0
 , (3.4) 

where P+ and P– are defined by the boundary conditions at the two ends of the one dimensional 
system. 
 
In the case of a plane-wave propagating in an unbounded open space, there is only a wave 
traveling in one direction and therefore: 

 P(x) = P+e− jkx; V (x) =
P+e− jkx

z0
; I =

1
2

P+ 2

z0
  , and (3.5) 

 p(x, t) = Re P(x)e jωt{ }= P+ cos ωt − kx + ∠P+( ). (3.6) 

 
Note that P(x) and V(x) are proportionally related by z0 and that z0 is real and independent of 
frequency. 
 
We also saw that in one-dimensional systems with forward and backward waves the specific 
acoustic impedance varied in space and was complex: 

 ZS (x) =
P(x)

V x (x)
 (3.7) 
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II. Spherically symmetric waves: Another kind of one-dimensional wave 
A. Spherical Coordinates & 
Symmetry 
 
Fig. 3.1: The transformation between 
three dimensional Cartesian 
coordinates (x,y,z) and spherical 
coordinates r, θ, and φ. 

z

x

y

rθ

φ

 
 
If we assume “spherical symmetry” (i.e. the pressure and particle velocity only vary in r, the 
distance from the ‘origin’ of the spherical wave), then we can define a spherically symmetric 
wave equation: 

 1
r2

∂ r2 ∂p(r, t)
∂r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

∂r
=

1
c2

∂2 p(r, t)
∂t2   . (3.8) 

 
We can make (3.8) analogous to the plane wave equation (3.1) by expressing both p(r,t) terms 
above as r p(r,t):  The first step is to multiply both sides of (3.8) by r: 

 r 1
r2

∂ r2 ∂p(r,t)
∂r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

∂r
= r 1

c2
∂2 p(r, t)

∂t2   ,  then rearrange such that 

 ∂2rp(r,t)
∂r2 =

1
c2

∂2rp(r,t)
∂t2    . (3.9) 

 
This result is identical to (3.1) except that we have replaced p(x,t), with rp(r,t).   
 
Therefore a general solution to spherically symmetric waves is 
 

 
rp(r,t) = f + t − r /c( )+ f − t + r /c( ), or

p(r,t) =
f + t − r /c( )

r
+

f − t + r /c( )
r

.
 (3.10) 

Note that this solution specifies that the amplitude of the pressure varies inversely with r.  
As r increases, the amplitude of the pressure falls.  This is one difference between plane 
waves and spherical waves. 
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B. Spherical Waves in the Sinusoidal Steady State: Outward Wave Only 
 In the sinusoidal steady state: 
 p(r, t) = Re P(r)e jωt{ }, (3.11) 

 where:    P(r) =
A
r

e− jkr .  

Comparing this description of the pressure term  to the description of the outward going wave in 
a plane wave, P(x) = P+e− jkx , note that while the complex amplitude P+ has units of pressure, A 
has units of pressure times length. 
 What about velocity?  We can relate the complex description of pressure and velocity 
using the acoustic version of Newtons’ second law: 

 −ρ0
∂vr (r,t)

∂t
=

∂p r, t( )
∂r

  . (3.12) 

leading to a more complicated solution for the velocity where  
 v(r,t) = Re V (r)e jωt{ }, and (3.13) 

  V (r) = P(r) 1
ρ0c

1+
1
jkr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

A
r

e− jkr 1
ρ0c

1+
1
jkr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   . (3.14) 

 
The particle velocity, for a given source amplitude, varies with distance from the source r, in a 
nonlinear manner and also varies wave number k (unlike uniform plane waves).   
The specific acoustic impedance (magnitude and angle) seen by the wave depends on r and k: 
 

 Z S (r) =
P(r)
V (r)

=
ρ0c

1+
1
jkr

=
z0

1+
1
jkr

  . (3.15) 

 
 Equations 3.11, 3.14 and 3.15 define P(r), V(r) and ZS(r) at all distances from the wave 
source, but, some useful approximations work near to and far from the source. 
 
 
In the “Far Field”, where kr>>1, Equations 3.16 and 3.17 are greatly simplified: 
 

 ZS (r)
kr>>1

≈ ρ0c   and V (r) kr>>1 ≈
A
r

e− jkr 1
ρ0c

=
P(r)
ρ0c

  . (3.18a&b) 

In the “Far Field” V(r) and P(r) are proportionately related by the characteristic impedance of the 
medium z0=ρ0c as in a uniform plane wave, and the magnitudes of V(r) and P(r) decrease 
proportionately with distance from the source.  
 
 The inverse proportionality between r and |V(r)| and |P(r)| leads to an average power 
density (or sound intensity) that decreases as the square of r:  

 I(r)
kr>>1

=
1
2

Re P(r)V *(r){ }≈
1
2

P(r) 2

z0
=

1
2

V (r) 2 z0 =
1
2

A 2

z0r2 .  (3.19) 
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This relationship is often referred to as the “inverse square law”. 
 
 In the “Near Field” where kr<<1, ZS(r) is approximately masslike:   

  ZS (r) =
z0

1+
1
jkr

=
jz0kr
jkr +1

 

  ZS (r)
kr<<1

≈ jz0kr ,  (3.20) 

and the particle velocity lags the sound pressure by π/2 radians: 

  V (r) kr<<1 =
P(r)
ZS ≈

P(r)
jz0kr

. (3.21) 

 
Since ZS(r) is dominated by a reactive term when kr<<1, little power is transferred from the 
source to the space that surrounds it.   
 
 
2. "Simple" Spherical Sources:  
A. Pulsing Sphere 

Fig 3.2  A pulsing sphere 

a

 

 
Where simple means all parts of the surface are vibrating 
in phase!  The sphere pulsations are also constrained to be 
small compared to the steady-state dimensions. 

“Source Strength”= U S = 4πa 2 V(a)   . (3.22) 

(Note that Source Strength is a volume velocity.) 

 
 The “Radiation impedance” (with units of Acoustic Ohms Pa-s/ m3) at the surface of the 
source is: 
 Z(a) =

P(a)
U S

=
1

4πa2
z0

1 +
1

jka

=
z0

4πa 2
jka

1 + jka
  . (3.23) 

In the High Frequencies, ka >>1, Z(a) looks like a characteristic acoustic impedance: 

 Z(a) ≈
z0

4πa 2
  . (3.24) 

At Low Frequencies, when ka <<1, 1
1 + jka

≈ 1 − jka( ), and 

 Z(a) ≈
z0

4πa 2 1 − jka( )jka =
z0

4πa2 ka( )2 + jka( ). (3.25) 
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Since the real part of Z(a) in the “Low Frequencies” is proportional to ω2, the average power 
radiated for a given source strength is also proportional to frequency.  

 Π =
1
2

U S
2 Re Z(a){ } ≈ U S

2 z0 ka( )2

8πa2 = US
2 ω2z0

8πc2
  . (3.26) 

i.e. at low ka, little average sound power radiates to the environment.  Also note that for a given 
US, with ka <<1 the average power radiated is independent of the dimensions of the source! 

 
       How can we describe wave propagation from a spherical source in terms of source strength?  
We have described the sound pressure in a spherical wave in terms of a complex constant A, i.e.  

P(r ) =
A
r

e − jkr
. 

 Knowing the source strength, we can define A in terms of the sound pressure at the walls of the 
spherical source:  

 P(a) =
A
a

e− jka = US Z(a); i.e. A = aUS Z(a)e− jka  . (3.27) 

In the Low Frequency situation, i.e. ka << 1, we can approximate e-jka as 1, and we can use the 
Low Frequency approximation for Z(a) : 

 A ≈ aU S
z0

4πa2 ka( )2 + jka( )≈ jωUS
ρ0
4π

  . (3.28) 

Therefore, when the radius a of the source is such that that ka << 1, the sound pressure at some 
distance r is: 

 P(r) = jωUS
ρ0
4πr

e− jkr   . (3.29) 

 
3.  Generalization of the simple source concept 
 The sound radiated from an acoustically small source with kx << 1, where x  is some 
descriptive linear dimension of the source, can be characterized by a source strength US as long 
as all parts of the 'radiator' move in phase.  
 
For example the output of three small loud speakers - 
of diaphragm areas S1, S2 and S3 and diaphragm 
velocities V1, V2, V3,  that all fit within an imaginary 
sphere of radius a  can be approximated by the output 
of a simple source with source strength: 

 US = SiV i
i=1

n
∑

= V (S) • dSS∫∫

  . (3.30) 

Figure 3.3 

S1, V1

S2, V2

S3, V3

2a
 

As long as all parts of all of the diaphragms are moving in phase and ka <<1. 
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Other low-frequency "simple sources" include: 
Figure 3.4 
 
A Loud Speaker in a box, 

VCone

SCone

 
 
The open end of an organ pipe, 

V

S

 
 
 
Radiation from the mouth. 

 

VLips

SLips

 
The equivalence to a simple source when ka <<1 also implies that far away from the radiator in 
the Far Field, where r>>a , the radiation is spherically symmetric and the sound pressures and 
particle velocities within the wave are quantifiable in terms of the source strength and the Far 
Field produced by a spherical source: 

 P(r) ≈
A
r

e− jkr ,  V (r) ≈
A

ρ0cr
e− jkr ,  where  A ka<<1 ≈ jωUS

ρ0
4π

 and z(r) ≈ z0  . (3.31) 

 
4.  More About Radiation Impedance 
 We have just argued that the specific acoustic impedance which describes the 
relationship between sound pressure and particle velocity is the same in the far field for any 
'simple' source.  However, one constraint on sound radiation that differs for the four simple 
sources in Figures 3.3 and 3.4 is the load that the surrounding air places on the radiators, i.e. the 
radiation impedance ZR.  Knowledge of ZR allows us to quantify: 
 (1). Power radiated from a source to the environment, and 
 (2). The resistive and reactive forces of the medium on the source. 
 
The pulsing sphere revisited: 
 We have already derived the radiation impedance acting on the surface of a pulsing 
sphere of radius a, where we can modify (3.23) such that: 

 
ZR =

P(a)
US

=
z0

4πa2
jka

1+ jka
1− jka
1− jka

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

z0
4πa2

ka( )2 + jka

ka( )2 +1   (3.32) 
Eqn. (3.32 describes a real part and an imaginary part to ZR. where 

 RR =
z0 ka( )2

4πa2 ka( )2 +1( )
,  and XR =

z0ka

4πa2 ka( )2 +1( )
  . (3.33) 
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According to (3.33), at low frequencies when ka <<1, the radiation resistance is independent of 
the sphere's radius and has a magnitude that increases as the square of ω: 

 RR ka<<1 ≈
z0 ka( )2

4πa2 =
z0k2

4π
=

z0ω2

4πc2   . (3.34) 

In the same low-frequency range, the radiation reactance is positive and proportional to 
frequency and is well approximated by an acoustic mass or inertance: 

 XR ka<<1 ≈
z0ka
4πa2 = ω ρ0a

4πa2 = ωM   . (3.35) 

This mass is equivalent to a blanket of air around the sphere of thickness a. 
At high frequencies, ka >>1 ,the radiation resistance approximates the ratio of the characteristic 
impedance of the medium and the area of the sphere and the reactance decreases proportionately 
with sound frequency: 

  RR ka>>1 ≈
z0

4πa2 , and XR ka>>1 ≈
z0

4πa2ka
=

ρ0c2

4πa3ω
  . (3.36) 

Figure 3.5:  The normalized 
radiation resistance RN and 
reactance XN acting on a pulsating 
sphere.  The normalization factor 
depends on the surface area of the 
sphere S and the characteristic 
impedance of the media z0.  The 
dashed lines illustrate the slopes of 
relationships that are proportional 
to ω, ω2 and 1/ω. 

ka
0.001 0.01 0.1 1 10 100

∝ 1/ω

∝ ω
∝ ω2

RN

XN

10

1

0.1

0.01

0.001

 
Each of the impedance components described above have a non-simple frequency dependence.  
There is trick to thinking about these in a more simple way.  The radiation admittance of a 
sphere is much simpler in form, where 

Y R =
1

ZR
=

1
RYR

+
1

XYR
, 

where:  RYR =
z0

4πa2 , and XYR ≈ ω ρ0a
4πa2  

 
More discussions of the radiation impedance can be found in Beranek 1986. 
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4. Combinations of Simple Sources 
 Source - frequency combinations that do not meet either the small ka or “in-phase” 
requirements can sometimes be approximated by combinations of simple sources.  For example, 
if we are concerned about the far-field transmission from the lips of sound frequencies whose 
wave lengths approximate the mouth opening ka ≈ 1,  you could model the mouth as an array of 
simple sources 

x

U1

U2

{
{

d/2

d/2

P(r,θ)
r1

r

r2

θ

 

 
Figure 3.6  Two simple sources U1 and U2 are 
separated by a distance d.  We are interested in 
the sound pressure P(r,θ)  at a point in the far 
field (r >>d, the open circle).  The distance 
between the measurement point and the two 
sources is r1  and r2.  r is the  distance 
between the measurement point and a point 
half-way between the two sources (the x).  θ is 
the angle between r and the line defined by the 
two sources. 

 Using superposition: 

 P(r,θ) = P1(r) + P2(r) =
jωρ0
4π

U1
r1

e− jkr1 +
U2
r2

e− jkr2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (3.37)  

Since r >>d we can assume r, r1 and r2 are parallel such that 
 
r1 ≈ r −

d
2

cosθ and 

r2 ≈ r +
d
2

cosθ : 

P(r,θ) =
jωρ0
4π

U1
r − d 2( )cosθ

e− jk r− d 2( )cosθ( )+
U2

r + d 2( )cosθ
e− jk r+ d 2( )cosθ( )⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Furthermore, since r >> (d/2) cosθ, the effect of distance on the magnitudes of each term are 
approximately equal and can be factored out along with the common e-jkr dependence: 

 P(r,θ) =
jωρ0
4πr

e− jkr U1e+ jk (d 2) cosθ + U2e− jk (d 2) cosθ( ). (3.38)  

Finally, for the special case where |U1|=|U2|=U0 and ∠U2 -∠U1=φ: 

 P(r,θ) =
jωρ0
2πr

U0e− jkr cos k (d 2)cosθ + φ /2( ). (3.39) 

-The multiplier to the cosine function in 3.39 defines an equivalent simple source of strength 
jωρ0
2πr

U0 and propagation constant e − jkr .   

-The cosine function   cos k d / 2( )cosθ + φ / 2( ) defines a directionality to the source output 
that depends on k, d, θ and φ.   
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5. Output of Arrays 
Case A.  Two simple sources in phase and of equal source strength 

 Equation 3.39 is relevant, P(r,θ) =
jωρ0
2πr

U0e− jkrg(θ) , where  

g(θ) = cos k d /2( )cosθ + φ /2( ) and φ = 0; 
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Example 1:  Sources are separated 
by a distance d= λ/8. What’s kd?   
 The plot on the left is a 
polar plot of the variation in |P| vs. 
θ at a large distance from the 
source.  The ‘x’s show the source 
axis.  The vertical dotted line shows 
the direction ‘in-line’ with the 
sources.  The horizontal line is the 
direction perpendicular to the 
source  line.  The concentric circles 
code pressure amplitude as a 
function of θ.  With d=λ/8,  The 
sound pressure magnitude is nearly 
nondirectional.   

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Polar Plot of |P| vs theta, d= lambda/8

How can we think about the small reductions in |P| that do occur about the angles that are close 
to on-axis?  Why are the pressures that are off-axis larger in magnitude? 
g(θ=0)=cos(2π/λ d/2 cos(0))=cos(2π/λ λ/16 cos(0))=cos(π/8) 

g(θ=π/2)=cos(π/8 cos(π/2))=_______  
 
Example 2:  d=λ/4 
 
g(0)=cos(2π/λ λ/8 cos(0))= ______ 
 
 
g(π/2)=cos(π/4 cos(π/2)) = ______ 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Polar Plot of |P| vs theta, d= lambda/4
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Example 3:  d=λ/2 
 
g(0)=cos(2π/λ λ/4 cos(0))= ____ 
 
 
g(π/2)=cos(π/2 cos(π/2)) = ______ 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Polar Plot of |P| vs theta, d= lambda/2

Example 4:  d=λ 

 

g(0)=cos(2π/λ λ/2 cos(0))= _____ 
 
 
g(π/2)=cos(π cos(π/2)) = _______ 
 
 
g(π/3)=cos(π cos(π/3)) = ________ 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Polar Plot of |P| vs theta, d= lambda

Example 5: d=2λ 

 
g(?)  = 0? 

 

 
What do these patterns look like 
in three-dimensions?   
 
Are there some simple rules to 
the number of nodes in each 
pattern? 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Polar Plot of |P| vs theta, d= 2 lambda
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B.  Equal strength Sources that are close to each other and out of phase: The dipole 
 U1 = -U2; therefore |U1=|U2|=U0 but ∠U1-∠U2=π; and φ/2=π/2; 

 P(r,θ) =
jωρ0
2πr

U0e− jkr cos k d 2cosθ + φ /2( )  (3.40) 

Since φ/2=π/2, and k=2π/λ; 

 P(r,θ) =
jωρ0
2πr

U0e− jkr sin dπ λcosθ( )   . (3.41) 

Finally since d << λ; 

 P(r,θ) =
jωρ0
2πr

U0e− jkr π λdcosθ =
jω2ρ0
4πrc

dU0 cosθ e− jkr    . (3.42) 

where |P(r,θ)| depends directly on d, U0 ,  ω2, 1/r and cosθ.   The product dU0  is sometimes 
called “Dipole Strength”.  
 
The dipole has a directivity pattern 
(on the right) that in one dimension 
is similar to the reverse of the two 
in-phase simple sources with d=λ/2.  
Are they similar in three 
dimensions?  _________ 
Also notice the difference in the 
amplitude of the pressures between 
here and Example 3 above. 

-0.2 -0.1 0 0.1 0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Polar Plot of Dipole Output |P| vs theta, d= lambda/20

In example 3 the maximum pressure magnitude is measured with θ=±π/2:     

      PMAX
Monopole =

ρ0ωU0
2πr

 .  The maximum pressure amplitude produced by the dipole is: 

 PMAX
Dipole =

dU0ω2ρ0
4πrc

  , such that (3.43) 

 
PMAX

Dipole

PMAX
Monopole =

dU0ω2ρ0
4πrc

ρ0ωU0
2πr

=
dω
2c

= π d
λ

<1  . (3.44) 

C. General Conclusions:  
Arrays of simple sources can produce radiation patterns that are directional.   
The directivity depends on the spacing and the phases of the sources. 
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D. Directivity Index 
 
A Dipole 

θ

φ

X

X

 
 A useful metric that characterizes and quantifies angular 
selectivity (or directivity) of a sources output, is the Directivity Index., 
D, where: 

D =
Mean - Square response in some reference direction

Mean Square response averaged over all angles 
, 

or  D =
| Pref |2

1
4π

| P(r,θ,φ) |2 sinθ dθ dφθ =0
π∫φ=0

2π∫
 

where the reference direction is usually the axis describing the largest 
response.  For example the axis of an acoustic dipole is defined by the 
line that connects the two sources and the two maxima in pressure 
response.  A suitable reference angle is θ=0.  In the dipole 
P(r,θ,φ) ∝ cos θ, and  

 D =
cos2(0)

1
4π

cos2 θ sinθ dθ dφθ=0
π∫φ=0

2π∫
=

1
1

4π
4π
3

= 3,  

where  
 10log10(3) = 4.8dB. 
 In an acoustic monopole or simple source where the output is non-directional, i.e. 
|P(r,θ,φ)| is independent of direction: 

 D =
| P(r) |2

1
4π

| P(r) |2 sinθ dθ dφθ =0
π∫φ=0

2π∫
=

1
1

4π
4π

=1  . 
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