
Lecture 7 Acoustics of Speech & Hearing 6.551 - HST 714J 

Lecture 7: Lumped Elements 

I. What is a lumped element? 
 Lumped elements are physical structures that act and move as a unit when 
subjected to controlled forces.  Imagine a two-dimensional block of lead on a one-
dimensional frictionless surface.  

x

mass=MFORCE
Acceleration

 
 When a force is imposed on the block, the block moves as a unit in a direction 
described by the difference in force acting on its two surfaces, or analytically: 

 dV
dt

=
Net Force

Mass
 (5.1) 

 
The key features is that a gradient of a physical parameter produces a uniform 
physical response throughout the lump. 
 
 Another example of a lumped element is an electrical resistor where a difference 
in the Voltage (E) across the resistive element produces a current (I) that is uniform 
throughout the resistor: 
 

I
E1 E2

a resistor
of value R  

where: I = E1 − E2( )/R (5.2) 
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II. Lumped Acoustic Elements 

A. Elements: A lumped element is a representation of a structure by one or two 
physical quantities that are homogenous or varying linearly throughout the structure 
 

Standing Waves in P and 
V in a long tube with a 
rigid termination at x=0. 
The spatial variation in the 
sound pressure magnitude 
and phase P(x) is defined 
by a cosine function.  The 
spatial variation in particle 
velocity magnitude and 
phase V(x) is defined by a 
sine function.  The region 
where the tube can act as a 
lumped element is the 
region where the pressure 
amplitude is nearly 
constant and the ‘volume 
velocity’ (v x tube cross-
section) varies linear with 
x. 

 

B.  An example of a lumped acoustic element is a short open tube of moderate 
diameter, where length l and radius a are <0.1 λ. 

u(t)

p
1
(t) p

2
(t)

length l

A SHORT 
CIRCULAR TUBE 

OF RADIUS 
a

 
Under these circumstances particle velocity V and the sound pressures are simply 
related by: 

 dV
dt

=
P1 − P2( )

ρ0l
 (5.3) 
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where Eqn. 5.3 is the specific acoustic equivalent of Eqn. 5.1.  (Hint: you can describe 
the forces acting on the lump by multiplying the pressures by the cross-sectional area 
of the tube πa2. 
C. Volume Velocity and Acoustic Impedance 
 In discussing lumped acoustic elements, it is convenient to think about velocity 
in terms of a new variable Volume Velocity U where in the case of the tube above,  

UP1

length l

P2 2 x a

 
the volume velocity is defined by the product of the particle velocity and the cross-
sectional area of the tube, i.e. U = πa2 V = SV   . 
 
The relationship between volume velocity and the pressure difference in the open tube 
above can be obtained by multiplying both sides of Eqn, 5.3 by S=πa2, i.e. 

 
S dV

dt
=

P1 − P2( )
ρ0l

S

dU
dt

=
P1 − P2( )

ρ0l
S =

P1 − P2( )
ρ0Sl

S2 ,where Sl = Tube Volume.
 (5.4) 

The Acoustic Impedance of the tube is :  P1 − P2
U

 

III. Separation into ‘Through’ and ‘Across’ Variables 

 , where  power(t) = through (t) across(t)  

 ‘Across’ variable ‘Through’ variable 

Electrics voltage e(t) current i(t) 

Mechanics: Impedance 
analogy 

force f(t) velocity v(t) 

Mechanics: Mobility 
analogy 

velocity v(t) force f(t) 

Acoustics: Impedance sound pressure p(t) volume velocity u(t) 
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analogy 
Acoustics: Mobility 

analogy 
volume velocity u(t) sound pressure p(t) 

In all of the above analogies, power(t) = through (t) across(t)  has units of watts. 

IV. Two Terminal Elements  

A. Electrical Elements 
Figure 5.1 Simple linear 
2-terminal lumped 
electrical elements and 
their constitutive 
relations. The 
orientation of the arrow 
and the +/- signs 
identifies the positive 
reference direction for 
each element.  In this 
figure the variable i is 
current and v is voltage.  
(From Siebert “Circuits, 
Signals and System, 
1986). 

Note that R, C and L are the coefficients of the 0th and 1st order differential equations 
that relate v(t) (or e(t)) to i(t). 
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Units of R are ohms (Ω)
Units of G are siemens (S)

v(t) = v0(t) independent of i(t) i(t) = i0(t) independent of v(t)

Units of C are farads (F) Units of L are henries (H)

LC v(t)v(t)

v(t)

i(t)i(t)

v0(t)i(t)

v(t)

i0(t)i(t)

+

-

+

+

- + -
-

+

-

v(t)

v(t) = Ri(t) 

i(t)
+

-
i(t) = C

dv(t)
dt

v(t) = L
di(t)
dt

R =
1
G

t t

0

1
C

or
v(t) - v(0) = i(  )d 

0

1
L

or
i(t) - i(0) = v(  )d

or
i(t) = Gv(t)

Resistor Capacitor Inductor

Ideal Independent Voltage Source Ideal Independent Current Source

m mτ τ ττ
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B.  Analogous Elements 

Figure 5.2 
Electric elements and their  
mechanical and acoustic counter- 
parts in the “Impedance analogy” 
From Kinsler, Frey, Coppens, &  
Sanders, Fundamentals of Acoustics ,
 3rd Ed. (1982) 

 

C. Analogous Constitutive Relationships 
 

 Mechanical 
V vs F 

Electrical 
I vs E 

Acoustical 
U vs P 

 
Spring 

Capacitor 
Compliance 

 
Spring 

v(t) = CM
df (t)

dt
 

 
Capacitor 

i(t) = CE
de(t)

dt
 

 
Compliance 

u(t) = C A
dp(t)

dt
 

 
Damper 
Resistor 
Resistor 

 
Damper 

v(t) =
1

RM
f (t)  

 
Resistor 

i(t) =
1

RE
e(t)  

 
Resistor 

u(t) =
1

RA
p(t)  

 
Mass 

Inductor 
Inertance 

 
Mass 

v(t) =
1

LM
f (t)∫ dt  

 
Inductor 

i(t) =
1

LE
e(t)∫ dt  

 
Inertance 

u(t) =
1

LA
p(t)∫ dt  
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Mass

m

Cm = 1/s

Rm R R

C C

M L

Inertance Inductance

Compliance Compliance

Resistance

Fig. 10.3. Acoustic, electrical and mechanical
analogues.

Resistance Resistance

Capacitance

ElectricalMechanical Acoustical
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V vs F I vs E U vs P 
 

Spring 
Capacitor 

Compliance 

 
Spring 

 
V(ω) = jωCM F(ω)

 
Capacitor 

 
I(ω) = jωCE E(ω)  

 
Compliance 

 
U (ω) = jωCA P(ω)  

 
Damper 
Resistor 
Resistor 

 
Damper 

V (ω) =
1

RM
F(ω)  

 
Resistor 

I(ω) =
1

RE
E(ω)  

 
Resistor 

U (ω) =
1

RA
P(ω)  

 
Mass 

Inductor 
Inertance 

 
Mass 

V (ω) =
1

jωLM
F (ω )

 
Inductor 

I(ω) =
1

jωLE
E (ω )  

 
Inertance 

U (ω) =
1

jωLA
P(ω)

 

p(t) = Real Pe jωt{ }= P cos ωt +∠P( )
dp(t)

dt
= Real jωPe jωt{ }= −ω P sin ωt +∠P( )

= ω P cos ωt +∠P +π /2( )
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In the Sinusoidal Steady State: 
 

 Mechanical Electrical Acoustical 
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V. Acoustic Element Values and Physics 
 Element constraints result from physical process and element values are 

determined by physical properties including the dimensions of structures, e.g. the 

electrical resistance of a resistor depend on the dimensions and the resistivity of the 

material from which it’s constructed. 

 

A. Acoustic mass: units of kg/m4 

An open ended tube with linear dimensions l and a <0.1 λ and S=πa2 

l

p1 p2u(t)

circular tube

p(t) = p1(t) - p2(t)

p(t) = LA
du(t)
dt

assumes only inertial forcesLA =
ρο l

S
ρο Volume

S2=

ρο = equilibrium mass density of medium  

The Electrical Analog  
 

P1-P2=U jω LA . 

 

 Note that the acoustic mass is equivalent to the mass of the air in the enclosed 

element divided by the square of the cross-sectional area of the element.  Also since 

some small volume of the medium on either end of the tube is also entrained with the 

media inside the tube, the “acoustic” length is usually somewhat larger than the 

physical length of the tube.  For a single open end, the difference between the physical 

length and the acoustic length is ∆l ≈ 0.8a .  This difference is called the end 

correction. 
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B. Acoustic Compliance: units of m3/Pa 
Volume displaced per unit pressure difference (2 examples, both of which assume 

resistance and inertia are negligible). 

 
 1. A Diaphragm of  a < 0.1 λ 
 

vol =  p1 t( ) − p2 t( )( )C A

= p t( )CA

u t( ) =
d vol( )

dt
u t( ) = C A

dp t( )
dt

diaphragm at rest 
diaphragm displaced

volume displacement = vol

p1 t( ) p2 t( )

 
The Electrical Analog 

 

 
U = jωCA(P1 − P2) 

 
For a round, flat, “simply mounted” plate 
 

C A =
πa6 7 + v( ) 1 − v( )

16Et 3 , 

 
where: a  is the radius of the plate, v = 0.3 is Poisson’s ratio, E  is the elastic constant 

(Young’s modulus) of the material, and t  is the thickness (Roark and Young, 1975, p. 

362-3, Case 10a). 
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2.  Enclosed volume of air with linear dimensions <0.1 λ 
 

u(t)
p(t)

 

 
P(jω)

U(jω)

 
Another structure that may be well 
approximated by an acoustic 
compliance. 

C =
Volume

Adiabatic Bulk modulus
 

U = jωCAP  

The variations in sound pressure within an enclosed air volume generally occur about 

the steady-state atmospheric pressure, the ground potential in acoustics.  Therefore, 

one terminal of an electrical-analog of a volume-determined acoustic compliance 

should always be grounded. 

 

C. Acoustic Resistance: units of Acoustic Ohms (Pa-s/m3) 

1.  A narrow tube or radius a << 0.001 λ 

l
circular (radius = a) rigid tube --
filled with acoustic medium

p1 t( ) p2 t( )
u t( )

p t( ) = p1 t( )− p2 t( ) = RAu t( )← assumption;  only viscous forces

RA =
8ηl
πa4 ⇒

p1(t) − p2 (t)
u(t)

η = viscosity of medium  
 

Because of the viscous forces, relative motions of fluid at one radial position with 

respect to an adjacent position exerts a force opposing the motion that is proportional 

to the spatial derivative of the velocity and the fluid’s coefficient of shear viscosity η.  
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The action of these forces results in a proportionality of pressure difference and 

volume velocity that is analogous to an electric resistance.  In the sinusoidal steady 

state, then: 

P1(jω) P2(jω)

U1(jω) RA

, 

 
where P1-P2=U1 RA . 
 

 
The consequence of the viscosity is 

that the velocity at the stationary 

walls is zero, and is maximum in the 

center of the tube (see Fig. 5.3).  

The viscous forces produce energy 

loss near the walls where the 

velocity changes with position.   

  Fig. 5.3 Relative Particle velocity amplitude as a 
function of radial position in a small pipe of radius 

a = 0.1 cm, at frequency f = 200 Hz. 
After Kinsler and Frey, 1950; p. 238 

The velocity profile in Figure 5.3 varies as v(r) =1−e
− 0.1−r( )

δ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
, where the “space 

constant” , with η, the coefficient of shear viscosity = 1.86x10-5 N-s-

m-2 for air at STP,  ρ0, density of air = 1.2 kg-m3, and ω, radian frequency = 2πf. 

δ = η / ρ0ω( )[ 1/ 2]

 
At 200 Hz δ=1.1x10-4 m = 0.011 cm (Figure 5.3) 

At 20 Hz δ=3.5x10-5 m = 0.035 cm 
 
The effect of the viscous forces is insignificant when the radius of the tube is an order 

of magnitude or more larger than the space constant and therefore we can ignore 

viscosity for short tubes of moderate to large radius, 0.01λ < a <0.1λ. 
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type of acoustic resistance can be constructed from a long tube of moderate cross-

sectional dimensions (0.01 λ < a < 0.2 λ).  Such a construction can conduct sound 

power away from a system and can be treated as an acoustic resistance where: 

 
R =

ρ0 c
πa2 . 
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2. An infinitely long tube 
 

The action of an acoustic resistor is to absorb sound power.  The viscous forces 

within a narrow tube convert the sound power into heat that dissipates away. A second 
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There is a catch, however, in that 

this lumped element always has 

one end coupled to ground and 

therefore can only be used to 

either terminate acoustic circuits 

or be placed in parallel with other 

elements.  There are ways of 

dealing with long tubes as a 

collection of series and parallel 

elements that have already been 

discussed in Lecture 2. 

l is effectively infinite
p(t)

u(t)
P0

 
 

P1(jω)

U1(jω) RA

 

 

D. Two Mixed mass-resistance acoustic loads 

1. A tube of intermediate radius (neither wide nor narrow) has an impedance 

determined by the combination of an acoustic mass or inertance (associated with 

accelerating the fluid mass within the tube) and a resistance (associated with 

overcoming viscous drag at the stationary walls of the tube).  Since the pressure 

drop across the resistance and the mass elements add, we think of these as an R 

and L in series. 

u(t)
p

1
(t) p

2
(t)

length l

An intermediate 
tube

 
 

    ∆P = P2 − P1 = U jωρol S + R( ) 
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LE RE

 
where S is the cross-sectional area of the tube and R is the resistance. 

2. The radiation impedance acts whenever sound radiates from some element 

and is made up of an acoustic mass associated with accelerating the air particles 

near the surface of the element and a resistance associated with the transmission 

of sound energy into the far field.  Since the volume velocities associated with 

these two processes add (some fraction of U goes into accelerating the mass 

layer, while the rest radiates away from the element), we can think of these as 

two parallel elements.  

 
Radiation from the end of an organ pipe of radius a can be modeled by the following: 
 

LR RR

U

+
P
_

 
 

where:   

U
P

= Y Rad =
1

Z Rad
=

1
jωLR

+
1

RR

=
1

jω 0.8a
2πa2

+
1

ρ0c
2πa2

 

 
 
Note that the radiation mass is equivalent to the addition of a tube of radius a and 

length 0.8a to the end of the pipe.  This is the end correction!! 

 

E. Range of applicability of acoustic circuit theory. 
1. Pressure and volume-velocity ranges consistent with “linear acoustics”. 
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2. Frequency range limited by the assumption of “lumped” elements, i.e. the 

dimensions of the structures need to be small compared to a wavelength:  

a and l < 0.1 λ. 
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VI.   Circuit Descriptions of a Real Acoustic System 

A Jug or Helmholtz Resonator 

 

A. An Acoustic Circuit Description 
If we are using acoustic volume velocity as a through variable; the flow of volume 
velocity through the neck suggests a series combination of Acoustic Elements.  The 
volume velocity first flows through an a series combination of an acoustic inertance 
LA, and an acoustic resistor RA, and then into the acoustic compliance CA of the closed 
cavity, where: 

LA =
ρ0 ′ l 
πa2 ; RA = g(l,a, frequency); C A =

Volume
γP0

. 

Furthermore if we really treat the neck as an L and R combination than U2 = U1. 

 
 

In the sinusoidal steady state:     P1 ω( ) =U1 ω( ) jωLA + RA +
1

jωC A

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

The ratio of P1/U1 defines the acoustic input impedance of the bottle and in this case it 
is equal to the series sum of the impedance of the three series elements.   
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Z IN ω( )= jωLA + RA +
1

jωCA
 

B. An Electrical Analog of the Acoustic Circuit Description 
In Electrical circuits the wires that connect the ideal elements are perfect conductors. 

 
LE RE

CEE1 E2 E3

+ + +

 

If the numerical values of LE = LA, RE=RA, and CE=CA, then I1=U1, E1=P1 and 

E2=P2. 

C. A Mechanical Analog of the Acoustic Circuit Description 

In Mechanical circuits the rods that attach ideal mechanical elements are rigid and 

massless. 
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If the numerical values of LM = LA, 
RM=RA, CM=CA, then V1=U1=U2, and 
F=P1, then 

F
V1

= jωLM + RM + 1
jωCM

 

 
Where the total force acting on the 
elements equals the sum of the forces 
acting on each. 
 

F = V1 jωLM + RM + 1
jωCM

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
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