Lecture 1 - Electronic structure of semiconductors

February 7, 2007

Contents:

- 1. Electronic structure of semiconductors
- 2. Electron statistics
- 3. Thermal equilibrium

Reading assignment:

del Alamo, Ch. 1

Announcements:

Tomorrow's recitation slot will be used as lecture. This will be in exchange for lecture slot in May that will be used as recitation.

Key questions

- What makes semiconductors so special?
- How do electrons arrange themselves (in energy) in an electronic system?
- What is the formal definition of thermal equilibrium? What are some of its consequences?

1. Semiconductors as solids

 \Box Semiconductors are crystalline solids

 $Crystalline \ solid =$ elemental atomic arrangement, or $unit \ cell$, repeated ad infinitum in space in three dimensions.

- Si lattice constant: 0.54 nm
- Si atomic spacing: 0.24 nm
- Si atomic density: $5.0 \times 10^{22} \ cm^{-3}$

Semiconductors held together by *covalent bonding* \Rightarrow 4 valence electrons shared with 4 neighbours \Rightarrow low energy situation.

	IIIA	IVA	VA	VIA
	B₅	C	N	0
IIB	AI	Si	P	S
Zn	Ga	Ge	As	se
Cd	⁴⁹	₅₀	Sb	Te

 \Box Solid is electronic system with *periodic potential*

Fundamental result of solid-state physics: quantum states cluster in bands leaving bandgaps (regions without allowed states) in between.

 \Box Electronic structure of semiconductors

There are many more quantum states than electrons in a solid.

Quantum states filled with one electron per state starting from lowest energy state (*Pauli exclusion principle*).

Different solids have different band structures. At 0 K:

Distinct feature of semiconductors:

At 0 K, filling ends up with full band separated by $1-3 \ eV$ bandgap from next empty band.

Why is this significant?

No conduction is possible in a full band \Rightarrow insulators and semiconductors do not conduct at 0 K.

Conduction requires a partially filled band \Rightarrow metals conduct at 0 K.

But in semiconductors at finite temperatures, some electrons populate next band above bandgap \Rightarrow conduction becomes possible.

What is the law that regulates electron ocupation of states as a function of energy and temperature?

2. Electron statistics

At finite temperature, state occupation probability by electron determined by **Fermi-Dirac distribution function**:

$$f(E) = \frac{1}{1 + \exp\frac{E - E_F}{kT}}$$

 $E_F \equiv Fermi \ energy \equiv energy$ for which occupation probability is 50%

$$k \equiv Boltzmann\ constant\ = 8.62 \times 10^{-5}\ eV/K$$

 $kT \equiv thermal \ energy = 25.9 \ meV @ 300 \ K$

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

• for $E \ll E_F$: $f(E) \simeq 1$

• for
$$E \gg E_F$$
: $f(E) \simeq 0$

- width of transition around $E_F \simeq 3kT$ (20% criterium)
- symmetry: $f(E_F + E_1) = 1 f(E_F E_1)$
- Maxwell-Boltzmann approximation: For $E - E_F \gg kT$:

$$f(E) \simeq \exp{-\frac{E - E_F}{kT}}$$

For $E - E_F \ll kT$:

$$f(E) \simeq 1 - \exp \frac{E - E_F}{kT}$$

Temperature dependence of Fermi-Dirac distribution function:

In general, E_F function of T.

3. Thermal equilibrium

A particle system is in thermal equilibrium if:

- it is *closed*: no energy flow through boundaries of system
- it is in *steady-state*: time derivatives of all ensemble averages (global and local) are zero

Thermal equilibrium important because all systems evolve towards TE after having been perturbed.

In order to know how a system evolves, it is essential to know where it is going. \Box In thermal equilibrium, E_F constant throughout system

Lecture 1-12

Key conclusions

- In solids, electron states cluster in bands separated by bandgaps.
- Distinct feature of semiconductors: at 0 K, quantum state filling ends up with full band separated from next empty band by 1 − 3 eV bandgap ⇒ at around 300 K, some electrons populate next band above bandgap.
- Occupation probability of quantum systems in thermal equilibrium governed by *Fermi-Dirac distribution function*:

$$f(E) = \frac{1}{1 + \exp\frac{E - E_F}{kT}}$$

- System in *thermal equilibrium*: isolated from outside world + in steady state.
- In thermal equilibrium, E_F is independent of position.
- Order of magnitude of key parameters:
 - atomic density of Si: $N_{Si} \sim 5 \times 10^{22} \ cm^{-3}$
 - bandgap of Si: $E_q \sim 1 \ eV$
 - thermal energy: $kT\sim 26~meV$ @ 300K

Self-study

- Concept of *blackbody radiation*.
- Concept of *vacuum energy*.
- Concept of *density of states*.
- Understand how can the Fermi energy change with temperature.
- Maxwell-Boltzmann distribution function.