Lecture 11 - Carrier Flow (cont.)

March 1, 2007

Contents:

- 1. Dynamics of majority-carrier-type situations
- 2. Dynamics of minority-carrier-type situations

Reading assignment:

del Alamo, Ch. 5, §§5.4

Key questions

- What is the characteristic time constant of majority-carrier-type stuations?
- What is the characteristic time constant of minority-carrier-type situations? Always?

1. Dynamics of majority-carrier-type situations

Continuity equation for net volume charge:

$$\frac{\partial J_t}{\partial x} = -\frac{\partial \rho}{\partial t}$$
Under static conditions: $\frac{\partial \rho}{\partial t} = 0 \Rightarrow \frac{\partial J_t}{\partial x} = 0 \Rightarrow J_t$ uniform in space since since of the space of the space

Hence, for $t \gg \tau_d$:

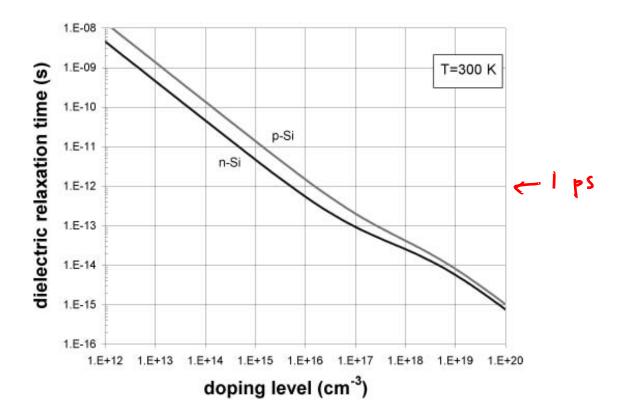
$$\frac{\partial J_t}{\partial x} \simeq 0$$

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

in 3D: $\int_{L} J_{L} ds = 0$ s sources or sincles of charge \Box Dielectric relaxation time

$$\tau_d = \frac{\epsilon}{\sigma}$$

Depends on doping level:



The higher the doping level, the faster quasi-neutrality is established after a perturbation.

For $N > 10^{16} \ cm^{-3}$, $\tau_d < 1 \ ps \implies$ typically can ignore dynamics of quasi-neutrality.

2. Dynamics of minority-carrier-type situations

 \Box MINORITY CARRIER SITUATIONS: characteristic time constant dominated by minority carrier physics

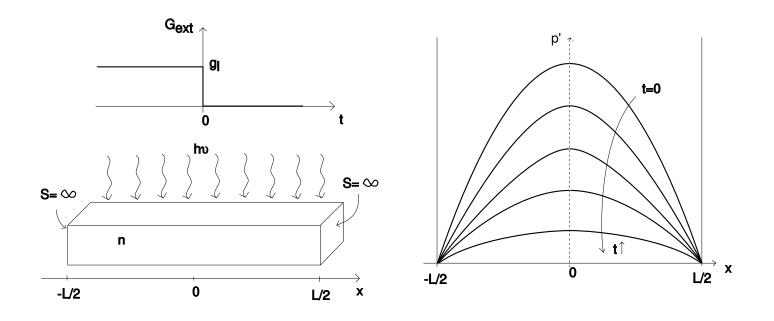
 \Rightarrow Substantial memory effects

- in uniform situations characteristic time constant is carrier lifetime
- in non-uniform situations?

\Box Example: Transient in semiconductor bar with $S=\infty$

Uniformly-doped n-type bar.

Switch-off transient after uniform illumination



Two recombination paths:

- <u>Bulk recombination</u>: time constant τ (carrier lifetime)
- <u>Surface recombination</u>: limited by carrier diffusion to surfaces; time constant: $\propto L$, $\propto 1/D$

K sample size

Combined time constant: $<\tau$

 \Box For $t \leq 0$ (steady-state solution under illumination):

$$D_h \frac{d^2 p'}{dx^2} - \frac{p'}{\tau} + G_{ext} = 0$$

Boundary conditions:

$$\frac{dp'}{dx}|_{x=0} = 0$$

$$p'(\pm \frac{L}{2}) = 0$$

Solution:

$$p'(x,t=0) = g_l \tau (1 - \frac{\cosh \frac{x}{L_h}}{\cosh \frac{L}{2L_h}})$$

 \square For $t \ge 0$:

$$D_h \frac{\partial^2 p'}{\partial x^2} - \frac{p'}{\tau} = \frac{\partial p'}{\partial t}$$

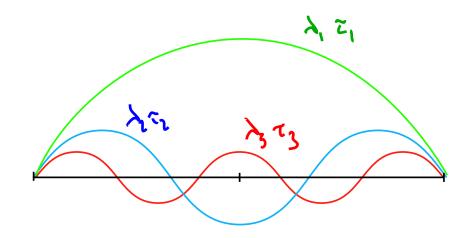
Solve by method of separation of constants:

$$\lambda_n = \frac{L}{(2n-1)\pi}$$
 for $n = 1, 2, 3, ...$

Time decay is not simple exponential but sum of individual exponentials. Time constant of nth mode:



Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



Study this result:

$$\frac{1}{\tau_n} = \frac{1}{\tau} + D_h [\frac{(2n-1)\pi}{L}]^2 > \frac{1}{\tau} \qquad \text{for } n = 1, 2, 3, \dots$$

• For all values of n, time constant of nth mode is <u>smaller</u> than carrier lifetime:

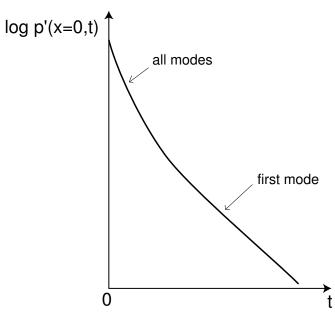
 $\tau_n < \tau$

Always faster decay than uniform situation due to surface recombination.

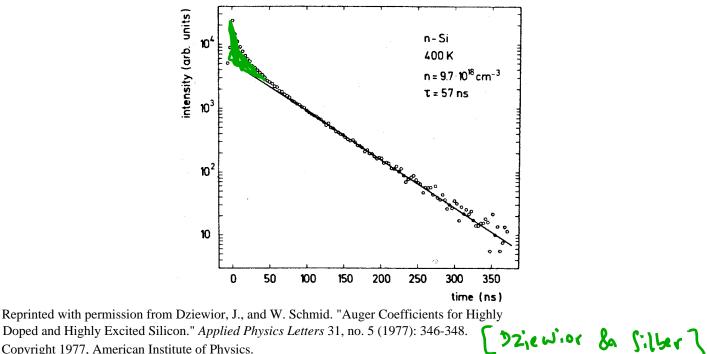
• Higher order modes decay faster:

$$n \uparrow \rightarrow \tau_n \downarrow$$

High-order components decay quickly \Rightarrow initial fast decay followed by slow decay dominated by 1st order time constant



This is seen in experiments:



Copyright 1977, American Institute of Physics.

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. After short time, decay dominated by first mode with time constant:

$$\frac{1}{\tau_1} = \frac{1}{\tau} + D_h(\frac{\pi}{L})^2$$

This is the dominant time constant of the problem.

In a general way:

$$\frac{1}{\tau_1} = \frac{1}{\tau} + \frac{1}{\tau_t}$$

with $\tau_t \equiv transit time$ or average time for excess carrier to reach surface

$$\tau_t = \frac{L^2}{\pi^2 D_h}$$

Surface recombination speeds up excess minority carrier decay by providing additional recombination paths:

 $\tau_1 < \tau$

In the limit of very slow bulk recombination,

$$\tau_1 \simeq \tau_t$$

Getting the excess carriers to the surface becomes the bottleneck to the recombination rate.

Key conclusions

- In a quasi-neutral, charge redistribution takes place in scale of *dielectric relaxation time*.
- Majority-carrier type situations can be considered quasi-static.
- Minority-carrier type situations show substantial memory.
- Time constants in minority-carrier type situations:
 - carrier lifetime
 - transit time $\propto L^2/D$
 - whichever one is smallest dominates
- Order of magnitude of key parameters in Si at 300K:
 - Dielectric relaxation time: $\tau_d < 1 \ ps$ (for typical doping levels).

Self study

- Simplification of Shockley's equations for space-charge and high-resistivity regions
- Comparison between SCR and QNR transport.