Lecture 27 - The "Long" Metal-Oxide-Semiconductor Field-Effect Transistor (cont.)

April 13, 2007

Contents:

- 1. Charge-voltage characteristics of ideal MOSFET (cont.)
- 2. Small-signal behavior of ideal MOSFET
- 3. Short-citcuit current-gain cut-off frequency, f_T

Reading assignment:

del Alamo, Ch. 9, §§9.5 (9.5.2), 9.6

Key questions

- What are the capacitances associated with the inversion layer charge?
- What is the topology of a small-signal equivalent circuit model for the MOSFET?
- What are the key bias and geometry dependencies of all small-signal elements in the model?
- How does one characterize the frequency response of a transistor?

1. Charge-voltage characteristics of ideal MOSFET (cont.)

 \Box Inversion charge:

For $V_{GS} > V_T$:

$$Q_I = W \int_0^L Q_i(y) dy$$

Change variables to V:

$$Q_I = W \int_0^{V_{DS}} Q_i(V) \frac{dy}{dV} dV$$

$$Q_I = W \int_0^{V_{DS}} Q_i(V) \frac{dy}{dV} dV$$

From channel current equation, we have:

$$\frac{dy}{dV}|_{V} = -\frac{W\mu_{e}}{I_{D}}Q_{i}(V)$$

Then:

$$Q_I = -\frac{W^2 \mu_e}{I_D} \int_0^{V_{DS}} Q_i^2(V) dV$$

Now use charge-control relationship:

$$Q_i(V) = -C_{ox}(V_{GS} - V - V_T)$$

Finally get:

$$Q_I = -\frac{2}{3}WLC_{ox}\frac{(V_{GS} - V_T)^2 + (V_{GS} - V_T)(V_{GD} - V_T) + (V_{GD} - V_T)^2}{(V_{GS} - V_T) + (V_{GD} - V_T)}$$

$$Q_{I} = -\frac{2}{3}WLC_{ox}\frac{(V_{GS} - V_{T})^{2} + (V_{GS} - V_{T})(V_{GD} - V_{T}) + (V_{GD} - V_{T})^{2}}{(V_{GS} - V_{T}) + (V_{GD} - V_{T})}$$

Evolution of Q_I with V_{DS} :

Used fundamental charge control relationship \Rightarrow expression only valid in linear regime.

For small V_{DS} :

$$Q_I \simeq -WLC_{ox}(V_{GS} - V_T)$$

For saturation: set $V_{DS} = V_{DSsat} = V_{GS} - V_T$ in linear regime expression and get:

Reduction of $|Q_I|$ towards saturation is another manifestation of *channel debiasing*:

 \Box Capacitance associated with inversion charge:

Inversion charge supplied by source and drain \Rightarrow need two capacitors

$$C_{gsi} = -\frac{\partial Q_I}{\partial V_{GS}}|_{V_{GD}} = \frac{1}{2}WLC_{ox}(V_{GS} - V_T)\frac{V_{GS} - V_T - \frac{2}{3}V_{DS}}{(V_{GS} - V_T - \frac{1}{2}V_{DS})^2}$$
$$C_{gdi} = -\frac{\partial Q_I}{\partial V_{GD}}|_{V_{GS}} = \frac{1}{2}WLC_{ox}(V_{GS} - V_{DS} - V_T)\frac{V_{GS} - V_T - \frac{1}{3}V_{DS}}{(V_{GS} - V_T - \frac{1}{2}V_{DS})^2}$$

Expressions valid in linear regime.

Note that for small V_{DS} :

$$C_{gsi} \simeq C_{gdi} \simeq \frac{1}{2} W L C_{ox}$$

For saturation regime, set $V_{DS} = V_{DSsat} = V_{GS} - V_T$ and get:

$$C_{gsi} = \frac{2}{3}WLC_{ox}$$

$$C_{gdi} = 0$$

Evolution of C_{gsi} and C_{gdi} with V_{DS} :

• Linear regime (small V_{DS}): uniform inversion layer charge:

 $C_{gsi} \simeq C_{gdi} \simeq \frac{1}{2} W L C_{ox}$

• Saturation regime $(V_{DS} > V_{DSsat})$: channel pinched-off:

2. Small-signal behavior of ideal MOSFET

In many applications, interested in response of device to *small signal* applied on top of bias:

Key points:

- Small signal is $small \Rightarrow$ non-linear device behavior becomes linear.
- Can separate response of MOSFET to bias and small signal.
- Since response is linear, *superposition* applies \Rightarrow effects of different small-signals independent from each other.

Mathematically:

$$i_D(V_{GS}, V_{DS}, V_{BS}; v_{gs}, v_{ds}, v_{bs}) \simeq$$

$$I_D(V_{GS}, V_{DS}, V_{BS}) + i_d(v_{gs}, v_{ds}, v_{bs})$$

and

$$i_d(v_{gs}, v_{ds}, v_{bs}) = i_d(v_{gs}) + i_d(v_{ds}) + i_d(v_{bs})$$

 i_d linear on small-signal drives:

$$i_d \simeq g_m v_{qs} + g_d v_{ds} + g_{mb} v_{bs}$$

Define:

$$g_m \equiv transconductance [S]$$

$$g_d \equiv output \text{ or } drain \ conductance [S]$$

$$g_{mb} \equiv back \ transconductance [S]$$

Equivalent circuit model representation:

Approach to computing g_m , g_d , and g_{mb} :

$$g_m \simeq \frac{\partial I_D}{\partial V_{GS}} \big|_{V_{DS}, V_{BS}} \quad g_d \simeq \frac{\partial I_D}{\partial V_{DS}} \big|_{V_{GS}, V_{BS}} \quad g_{mb} \simeq \frac{\partial I_D}{\partial V_{BS}} \big|_{V_{GS}, V_{DS}}$$

Will deal with g_{mb} after we have dealt with body effect.

\Box Transconductance, g_m :

$$g_m \simeq \frac{\partial I_D}{\partial V_{GS}} \big|_{V_{DS}, V_{BS}}$$

• Linear regime:

$$I_D = \frac{W}{L} \mu_e C_{ox} (V_{GS} - V_{th} - \frac{1}{2} V_{DS}) V_{DS}$$

$$g_m = \frac{W}{L} \mu_e C_{ox} V_{DS}$$

• Saturation regime:

$$I_{Dsat} = \frac{W}{2L} \mu_e C_{ox} (V_{GS} - V_{th})^2$$

$$g_m = \frac{W}{L} \mu_e C_{ox} (V_{GS} - V_{th}) = \sqrt{2 \frac{W}{L} \mu_n C_{ox} I_D}$$

\Box Output conductance, g_d :

$$g_d \simeq \frac{\partial I_D}{\partial V_{DS}} \big|_{V_{GS}, V_{BS}}$$

• Linear regime:

$$I_D = \frac{W}{L} \mu_e C_{ox} (V_{GS} - V_{th} - \frac{1}{2} V_{DS}) V_{DS}$$

$$g_d = \frac{W}{L} \mu_e C_{ox} (V_{GS} - V_{th} - V_{DS})$$

• Saturation regime:

$$I_{Dsat} = \frac{W}{2L} \mu_e C_{ox} (V_{GS} - V_{th})^2$$

$$g_d = 0$$

\Box Add capacitors:

In saturation:

$$C_{gdi} = 0, \ C_{jB} = 0, \ g_o = 0$$

3. Short-circuit current-gain cut-off frequency

 f_T : figure of merit to evaluate the frequency response of transistors.

 f_T provides insight into electron transport in MOSFET channel

For f_T , MOSFET biased with output shorted from the small-signal point of view:

With MOSFET in saturation, f_T defined as frequency at which smallsignal *current gain*, h_{21} goes to unity.

$$|h_{21}(f_T)| = |\frac{i_d}{i_g}|_{v_{ds}=0} = 1$$

As $f \downarrow \Rightarrow h_{21} \to \infty$.

 \Box Computation of f_T : small-signal equivalent circuit model:

 i_g and i_d given by:

$$i_g = j\omega C_{gsi} v_{gs}$$

 $i_d = g_m v_{gs}$

 h_{21} given by:

$$h_{21} = \frac{g_m}{j\omega C_{qsi}}$$

Magnitude of h_{21} is:

$$|h_{21}| = \frac{g_m}{\omega C_{gsi}}$$

Evolution of h_{21} with frequency:

 $|h_{21}|$ becomes unity at:

$$\omega_T = \frac{g_m}{C_{gsi}}$$

or

$$f_T = \frac{g_m}{2\pi C_{gsi}}$$

 \square Bias dependence of f_T :

$$f_T = \frac{1}{2\pi} \frac{3}{2} \frac{\mu_e (V_{GS} - V_T)}{L^2}$$

Key dependences:

- f_T increases linearly with V_{GS} (g_m linear in V_{GS})
- f_T independent of V_{DS} $(g_m, C_{gsi}$ independent of $V_{DS})$
- f_T increases linearly with μ_e (g_m linear in μ_e)
- f_T scales as L^{-2} (g_m scales as L^{-1} , C_{gsi} scales as L)

- \Box Physical meaning of f_T
- f_T has units of *inverse time*.
- Define *delay time*:

$$\tau_d = \frac{1}{2\pi f_T} = \frac{2}{3} \frac{L^2}{\mu_e (V_{GS} - V_T)}$$

Physical meaning of τ_d :

Delay time is average time for an electron to cross the channel from source to drain.

• Compute delay time directly.

First, time it takes for electrons to travel distance dy drifting at velocity v_e :

$$dt = \frac{dy}{v_e}$$

Then channel transit time is:

$$\tau_t = \int_0^L \frac{dy}{v_e(y)}$$

See Prob. 9.4 for a derivation of transit time:

$$\tau_t = \frac{2}{3} \frac{L^2}{\mu_e(V_{GS} - V_T)} = \tau_d$$

 f_T gives idea of intrinsic speed of transistor!

Key conclusions

• In saturation, inversion charge results in:

$$C_{gsi} \simeq \frac{2}{3} W L C_{ox}$$
 and $C_{gdi} = 0$

• *Transconductance*. In saturation regime:

$$g_m \propto \sqrt{I_D}$$

• Drain conductance. In saturation regime:

$$g_d \simeq 0$$

- f_T : figure of merit to characterize frequency response of MOS-FET
- f_T reflects intrinsic delay associated with electron transit from source to drain