Lecture 27 - The "Long" Metal-Oxide-Semiconductor Field-Effect Transistor (cont.)

April 13, 2007

Contents:

1. Charge-voltage characteristics of ideal MOSFET (cont.)
2. Small-signal behavior of ideal MOSFET
3. Short-citcuit current-gain cut-off frequency, f_{T}

Reading assignment:

del Alamo, Ch. 9, $\S \S 9.5$ (9.5.2), 9.6

Key questions

- What are the capacitances associated with the inversion layer charge?
- What is the topology of a small-signal equivalent circuit model for the MOSFET?
- What are the key bias and geometry dependencies of all smallsignal elements in the model?
- How does one characterize the frequency response of a transistor?

1. Charge-voltage characteristics of ideal MOSFET

 (cont.)Inversion charge:

For $V_{G S}>V_{T}$:

$$
Q_{I}=W \int_{0}^{L} Q_{i}(y) d y
$$

Change variables to V :

$$
Q_{I}=W \int_{0}^{V_{D S}} Q_{i}(V) \frac{d y}{d V} d V
$$

$$
Q_{I}=W \int_{0}^{V_{D S}} Q_{i}(V) \frac{d y}{d V} d V
$$

From channel current equation, we have:

$$
\left.\frac{d y}{d V}\right|_{V}=-\frac{W \mu_{e}}{I_{D}} Q_{i}(V)
$$

Then:

$$
Q_{I}=-\frac{W^{2} \mu_{e}}{I_{D}} \int_{0}^{V_{D S}} Q_{i}^{2}(V) d V
$$

Now use charge-control relationship:

$$
Q_{i}(V)=-C_{o x}\left(V_{G S}-V-V_{T}\right)
$$

Finally get:

$$
Q_{I}=-\frac{2}{3} W L C_{o x} \frac{\left(V_{G S}-V_{T}\right)^{2}+\left(V_{G S}-V_{T}\right)\left(V_{G D}-V_{T}\right)+\left(V_{G D}-V_{T}\right)^{2}}{\left(V_{G S}-V_{T}\right)+\left(V_{G D}-V_{T}\right)}
$$

$Q_{I}=-\frac{2}{3} W L C_{o x} \frac{\left(V_{G S}-V_{T}\right)^{2}+\left(V_{G S}-V_{T}\right)\left(V_{G D}-V_{T}\right)+\left(V_{G D}-V_{T}\right)^{2}}{\left(V_{G S}-V_{T}\right)+\left(V_{G D}-V_{T}\right)}$

Evolution of Q_{I} with $V_{D S}$:

Used fundamental charge control relationship \Rightarrow expression only valid in linear regime.

For small $V_{D S}$:

$$
Q_{I} \simeq-W L C_{o x}\left(V_{G S}-V_{T}\right)
$$

For saturation: set $V_{D S}=V_{D S s a t}=V_{G S}-V_{T}$ in linear regime expression and get:

$$
Q_{I}=-\frac{2}{3} W L C_{o x}\left(V_{G S}-V_{T}\right)
$$

Reduction of $\left|Q_{I}\right|$ towards saturation is another manifestation of channel debiasing:

\square Capacitance associated with inversion charge:
Inversion charge supplied by source and drain \Rightarrow need two capacitors

$$
\begin{aligned}
C_{g s i} & =-\left.\frac{\partial Q_{I}}{\partial V_{G S}}\right|_{G D}=\frac{1}{2} W L C_{o x}\left(V_{G S}-V_{T}\right) \frac{V_{G S}-V_{T}-\frac{2}{3} V_{D S}}{\left(V_{G S}-V_{T}-\frac{1}{2} V_{D S}\right)^{2}} \\
C_{g d i} & =-\left.\frac{\partial Q_{I}}{\partial V_{G D}}\right|_{G S}=\frac{1}{2} W L C_{o x}\left(V_{G S}-V_{D S}-V_{T}\right) \frac{V_{G S}-V_{T}-\frac{1}{3} V_{D S}}{\left(V_{G S}-V_{T}-\frac{1}{2} V_{D S}\right)^{2}}
\end{aligned}
$$

Expressions valid in linear regime.
Note that for small $V_{D S}$:

$$
C_{g s i} \simeq C_{g d i} \simeq \frac{1}{2} W L C_{o x}
$$

For saturation regime, set $V_{D S}=V_{D S s a t}=V_{G S}-V_{T}$ and get:

$$
\begin{gathered}
C_{g s i}=\frac{2}{3} W L C_{o x} \\
C_{g d i}=0
\end{gathered}
$$

Evolution of $C_{g s i}$ and $C_{g d i}$ with $V_{D S}$:

- Linear regime (small $V_{D S}$): uniform inversion layer charge:

- Saturation regime ($\left.V_{D S}>V_{D S s a t}\right)$: channel pinched-off:

2. Small-signal behavior of ideal MOSFET

In many applications, interested in response of device to small signal applied on top of bias:

MOSFET
small-signal

Key points:

- Small signal is small \Rightarrow non-linear device behavior becomes linear.
- Can separate response of MOSFET to bias and small signal.
- Since response is linear, superposition applies \Rightarrow effects of different small-signals independent from each other.

Mathematically:

$$
\begin{aligned}
& i_{D}\left(V_{G S}, V_{D S}, V_{B S} ; v_{g s}, v_{d s}, v_{b s}\right) \simeq \\
& \quad I_{D}\left(V_{G S}, V_{D S}, V_{B S}\right)+i_{d}\left(v_{g s}, v_{d s}, v_{b s}\right)
\end{aligned}
$$

and

$$
i_{d}\left(v_{g s}, v_{d s}, v_{b s}\right)=i_{d}\left(v_{g s}\right)+i_{d}\left(v_{d s}\right)+i_{d}\left(v_{b s}\right)
$$

i_{d} linear on small-signal drives:

$$
i_{d} \simeq g_{m} v_{g s}+g_{d} v_{d s}+g_{m b} v_{b s}
$$

Define:

$$
\begin{aligned}
& g_{m} \equiv \text { transconductance }[S] \\
& g_{d} \equiv \text { output or drain conductance }[S] \\
& g_{m b} \equiv \text { back transconductance }[S]
\end{aligned}
$$

Equivalent circuit model representation:

Approach to computing g_{m}, g_{d}, and $g_{m b}$:

$$
\left.\left.\left.g_{m} \simeq \frac{\partial I_{D}}{\partial V_{G S}}\right|_{V_{D S}, V_{B S}} \quad g_{d} \simeq \frac{\partial I_{D}}{\partial V_{D S}}\right|_{V_{G S}, V_{B S}} \quad g_{m b} \simeq \frac{\partial I_{D}}{\partial V_{B S}}\right|_{V_{G S}, V_{D S}}
$$

Will deal with $g_{m b}$ after we have dealt with body effect.

Transconductance, g_{m} :

$$
\left.g_{m} \simeq \frac{\partial I_{D}}{\partial V_{G S}}\right|_{V_{D S}, V_{B S}}
$$

- Linear regime:

$$
\begin{gathered}
I_{D}=\frac{W}{L} \mu_{e} C_{o x}\left(V_{G S}-V_{t h}-\frac{1}{2} V_{D S}\right) V_{D S} \\
g_{m}=\frac{W}{L} \mu_{e} C_{o x} V_{D S}
\end{gathered}
$$

- Saturation regime:

$$
\begin{gathered}
I_{D s a t}=\frac{W}{2 L} \mu_{e} C_{o x}\left(V_{G S}-V_{t h}\right)^{2} \\
g_{m}=\frac{W}{L} \mu_{e} C_{o x}\left(V_{G S}-V_{t h}\right)=\sqrt{2 \frac{W}{L} \mu_{n} C_{o x} I_{D}}
\end{gathered}
$$

Output conductance, g_{d} :

$$
\left.g_{d} \simeq \frac{\partial I_{D}}{\partial V_{D S}}\right|_{V_{G S}, V_{B S}}
$$

- Linear regime:

$$
\begin{gathered}
I_{D}=\frac{W}{L} \mu_{e} C_{o x}\left(V_{G S}-V_{t h}-\frac{1}{2} V_{D S}\right) V_{D S} \\
g_{d}=\frac{W}{L} \mu_{e} C_{o x}\left(V_{G S}-V_{t h}-V_{D S}\right)
\end{gathered}
$$

- Saturation regime:

$$
\begin{gathered}
I_{D s a t}=\frac{W}{2 L} \mu_{e} C_{o x}\left(V_{G S}-V_{t h}\right)^{2} \\
g_{d}=0
\end{gathered}
$$

\square Add capacitors:

In saturation:
$C_{g d i}=0, C_{j B}=0, g_{o}=0$

3. Short-circuit current-gain cut-off frequency

f_{T} : figure of merit to evaluate the frequency response of transistors.
f_{T} provides insight into electron transport in MOSFET channel
For f_{T}, MOSFET biased with output shorted from the small-signal point of view:

With MOSFET in saturation, f_{T} defined as frequency at which smallsignal current gain, h_{21} goes to unity.

$$
\left|h_{21}\left(f_{T}\right)\right|=\left|\frac{i_{d}}{i_{g}}\right|_{v_{d s}=0}=1
$$

As $f \downarrow \Rightarrow h_{21} \rightarrow \infty$.
\square Computation of f_{T} : small-signal equivalent circuit model:

i_{g} and i_{d} given by:

$$
\begin{aligned}
i_{g} & =j \omega C_{g s i} v_{g s} \\
i_{d} & =g_{m} v_{g s}
\end{aligned}
$$

h_{21} given by:

$$
h_{21}=\frac{g_{m}}{j \omega C_{g s i}}
$$

Magnitude of h_{21} is:

$$
\left|h_{21}\right|=\frac{g_{m}}{\omega C_{g s i}}
$$

Evolution of h_{21} with frequency:

$\left|h_{21}\right|$ becomes unity at:

$$
\omega_{T}=\frac{g_{m}}{C_{g s i}}
$$

or

$$
f_{T}=\frac{g_{m}}{2 \pi C_{g s i}}
$$

Bias dependence of f_{T} :

$$
f_{T}=\frac{1}{2 \pi} \frac{3}{2} \frac{\mu_{e}\left(V_{G S}-V_{T}\right)}{L^{2}}
$$

Key dependences:

- f_{T} increases linearly with $V_{G S}\left(g_{m}\right.$ linear in $\left.V_{G S}\right)$
- f_{T} independent of $V_{D S}\left(g_{m}, C_{g s i}\right.$ independent of $\left.V_{D S}\right)$
- f_{T} increases linearly with $\mu_{e}\left(g_{m}\right.$ linear in $\left.\mu_{e}\right)$
- f_{T} scales as $L^{-2}\left(g_{m}\right.$ scales as $L^{-1}, C_{g s i}$ scales as $\left.L\right)$

Physical meaning of f_{T}
f_{T} has units of inverse time.

- Define delay time:

$$
\tau_{d}=\frac{1}{2 \pi f_{T}}=\frac{2}{3} \frac{L^{2}}{\mu_{e}\left(V_{G S}-V_{T}\right)}
$$

Physical meaning of τ_{d} :
Delay time is average time for an electron to cross the channel from source to drain.

- Compute delay time directly.

First, time it takes for electrons to travel distance $d y$ drifting at velocity v_{e} :

$$
d t=\frac{d y}{v_{e}}
$$

Then channel transit time is:

$$
\tau_{t}=\int_{0}^{L} \frac{d y}{v_{e}(y)}
$$

See Prob. 9.4 for a derivation of transit time:

$$
\tau_{t}=\frac{2}{3} \frac{L^{2}}{\mu_{e}\left(V_{G S}-V_{T}\right)}=\tau_{d}
$$

f_{T} gives idea of intrinsic speed of transistor!

Key conclusions

- In saturation, inversion charge results in:

$$
C_{g s i} \simeq \frac{2}{3} W L C_{o x} \text { and } C_{g d i}=0
$$

- Transconductance. In saturation regime:

$$
g_{m} \propto \sqrt{I_{D}}
$$

- Drain conductance. In saturation regime:

$$
g_{d} \simeq 0
$$

- f_{T} : figure of merit to characterize frequency response of MOSFET
- f_{T} reflects intrinsic delay associated with electron transit from source to drain

