Lecture 35 - Bipolar Junction Transistor (cont.)

May 3, 2007

Contents:

1. Current-voltage characteristics of ideal BJT (cont.)

Reading material:

del Alamo, Ch. 11, §11.2 (11.2.1)

Key questions

- How does the BJT operate in other regimes?
- How does a complete model for the ideal BJT look like?

1. Current-voltage characteristics of ideal BJT (cont.)

\Box Forward-active regime $(V_{BE} > 0, V_{BC} < 0)$

Summary of key results:

$$I_C = I_S \, \exp \frac{q V_{BE}}{kT}$$

$$I_B = \frac{I_S}{\beta_F} (\exp \frac{qV_{BE}}{kT} - 1)$$

$$I_E = -I_C - I_B = -I_S \exp \frac{qV_{BE}}{kT} - \frac{I_S}{\beta_F} (\exp \frac{qV_{BE}}{kT} - 1)$$

• Current gain

$$\beta_F \simeq \frac{I_C}{I_B} \simeq \frac{\frac{n_i^2}{N_B} \frac{D_B}{W_B}}{\frac{n_i^2}{N_E} \frac{D_E}{W_E}} = \frac{N_E D_B W_E}{N_B D_E W_B}$$

To maximize β_F :

- $N_E \gg N_B$
- $W_E \gg W_B$ (for manufacturing reasons, $W_E \simeq W_B$)
- want npn, rather than pnp because this way $D_B > D_E$

 β_F hard to control \Rightarrow if β_F is high enough (> 50), circuit techniques effectively compensate for this.

• Equivalent circuit model

$$I_C = I_S \, \exp \frac{q V_{BE}}{kT}$$

$$I_B = \frac{I_S}{\beta_F} (\exp \frac{qV_{BE}}{kT} - 1)$$

$$I_{E} = -I_{C} - I_{B} = -I_{S} \exp \frac{qV_{BE}}{kT} - \frac{I_{S}}{\beta_{F}} (\exp \frac{qV_{BE}}{kT} - 1)$$

• Energy band diagram

• Summary of minority carrier profiles (not to scale)

\Box Reverse regime $(V_{BE} < 0, V_{BC} > 0)$

 I_E : electron injection from C to B, collection into E I_B : hole injection from B to C, recombination in C

Minority carrier profiles (not to scale):

Current equations (just like FAR, but role of collector and emitter reversed):

$$I_E = I_S \exp \frac{qV_{BC}}{kT}$$

$$I_B = \frac{I_S}{\beta_R} (\exp \frac{qV_{BC}}{kT} - 1)$$

$$I_C = -I_E - I_B = -I_S \exp \frac{qV_{BC}}{kT} - \frac{I_S}{\beta_R} (\exp \frac{qV_{BC}}{kT} - 1)$$

Equivalent-circuit model representation:

Prefactor in I_E expression is I_S : emitter current scales with A_E .

But, I_B scales roughly as A_C :

- downward component scales as A_C
- upward component scales as $A_C A_E \simeq A_C$

Hence, $\beta_R \simeq 0.1 - 5 \ll \beta_F$.

Forward-active Gummel plot $(V_{CE} = 3 V)$:

Reverse Gummel ($V_{EC} = 3 V$):

Energy band diagram:

\Box Cut-off regime $(V_{BE} < 0, V_{BC} < 0)$

 I_E : hole generation in E, extraction into B I_C : hole generation in C, extraction into B

Minority carrier profiles (not to scale):

Current equations:

$$I_E = \frac{I_S}{\beta_F}$$

$$I_B = -\frac{I_S}{\beta_F} - \frac{I_S}{\beta_R}$$

$$I_C = \frac{I_S}{\beta_R}$$

These are tiny leakage currents ($\sim 10^{-12} A$)

Equivalent-circuit model representation:

• Energy band diagram

\Box Saturation regime $(V_{BE} > 0, V_{BC} > 0)$

 I_C, I_E : balance of electron injection from E/C into B I_B : hole injection into E/C, recombination in E/C, respectively

Minority carrier profiles (not to scale):

Current equations: superposition of forward active + reverse:

$$I_C = I_S(\exp\frac{qV_{BE}}{kT} - \exp\frac{qV_{BC}}{kT}) - \frac{I_S}{\beta_R}(\exp\frac{qV_{BC}}{kT} - 1)$$

$$I_B = \frac{I_S}{\beta_F}(\exp\frac{qV_{BE}}{kT} - 1) + \frac{I_S}{\beta_R}(\exp\frac{qV_{BC}}{kT} - 1)$$

$$I_E = -\frac{I_S}{\beta_F}(\exp\frac{qV_{BE}}{kT} - 1) - I_S(\exp\frac{qV_{BE}}{kT} - \exp\frac{qV_{BC}}{kT})$$

 I_C and I_E can have either sign, depending on relative magnitude of V_{BE} and V_{BC} and β_F and β_R .

Equivalent circuit model representation (*Non-Linear Hybrid-* π *Model*):

Complete model has only three parameters: I_S , β_F , and β_R .

Energy band diagram:

In saturation, collector and base flooded with excess minority carriers \Rightarrow takes lots of time to get transistor out of saturation.

Key conclusions

- In FAR, current gain β_F maximized if $N_E \gg N_B$.
- β_F hard to control precisely: if big enough (> 50), circuit techniques can compensate for variations in β_F .
- BJT design optimized for operation in forward-active regime \Rightarrow operation in inverse regime is poor: $\beta_R \ll \beta_F$.
- In saturation, BJT flooded with minority carriers \Rightarrow takes time to get BJT out of saturation.
- Hybrid- π model: equivalent circuit description of BJT in all regimes:

• Only three parameters needed to describe behavior of BJT in four regimes: I_S , β_F , and β_R .