
6.826—Principles of Computer Systems 2002 

28. Availability and Replication 

This handout explains the basic issues in building highly available computer systems, and 
describes in some detail the specs and code for a replicated service with state. 

What is availability? 

A system is available if it delivers service promptly. Exactly what this means is something that 
has to be specified. For example, the spec might say that an ATM must deliver money from a 
local bank account to the user within 15 seconds, or that an airline reservation system must 
respond to user input within 1 second. The definition of availability is the fraction of offered load 
that gets prompt service; usually it’s more convenient to measure the probability p that a request 
is not serviced promptly. 

If requests come in at a certain rate, say 1/minute, with a memoryless distribution (that is, what 
happens to one request doesn’t depend on other requests; a tossed coin is memoryless, for 
example), then p is also the probability that not all requests arriving in one minute get service. If 
this probability is small then the time between bad minutes is 1/p minutes. This is called the 
‘mean time to failure’ or MTTF; sometimes ‘mean time between failures’ or MTBF is used 
instead. Changing the time scale of course doesn’t change the MTTF: the probability of a bad 
hour is 60p, so the time between bad hours is 1/60p hours = 1/p minutes. If p = .00001 then there 
are 5 bad minutes per year. Usually this is described as 99.999% availability, or ‘5-nines’ 
availability. 

The definition of ‘available’ is important. In a big system, for example, something is always 
broken, and usually we care about the service that one stream of customers sees rather than about 
whether the system is perfect, so we use the availability of one terminal to measure the MTTF. If 
you are writing or signing a contract, be sure that you understand the definition. 

We focus on systems that fail and are repaired. In the simplest model, the system provides no 
service while it is failed. After it’s repaired, it provides perfect service until it fails again. If 
MTTF is the mean time to failure and MTTR is the mean time to repair, then the availability is 

p = MTTR/(MTTF + MTTR) 

If MTTR/MTTF is small, we have approximately 

p = MTTR/MTTF 

Thus the important parameter is the ratio of repair time to uptime. Note that doubling MTTF 
halves p, and so does halving the MTTR. The two factors are equally important. This simple 
point is often overlooked. 

Redundancy 

There are basically two ways to make a system available. One is to build it out of components 
that fail very seldom. This is good if you can do it, because it keeps the system simple. However, 
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if there are n components and each fails independently with small probability pc, then the system 
fails with probability n pc. As n grows, this number grows too. Furthermore, it is often expensive 
to make highly reliable components. 

The other way to make a system available is to use redundancy, so that the system can work even 
if some of its components have failed. There are two main patterns of redundancy: retry and 
replication. 

Retry is redundancy in time: fail, repair, and try again. If failures are intermittent, repair doesn’t 
require any action. In this case 1/MTBF is the probability of failure, and MTTR is the time 
required to detect the failure and try again. Often the failure detector is a timeout; then the 
MTTR is the timeout interval plus the retry time. Thus in retry, timeouts are critical to 
availability. 

Replication is physical redundancy, or redundancy in space: have several copies, so that one can 
do the work even if another fails. The most common form of replication is ‘primary-backup’ or 
‘hot standby’, in which the system normally uses the primary component, but ‘fails over’ to a 
backup if the primary fails. This is very much like retry: the MTTR is the failover time, which is 
the time to detect the failure plus the time to make the backup live. This is a completely general 
form of redundancy. Error correcting codes are a more specialized form. Two familiar examples 
are the Hamming codes used in RAM and the parity used in RAID disks. 

These examples illustrate the application-dependent nature of specialized replication. A 
Hamming code needs log n check bits to protect n – log n data bits. A RAID code needs 1 check 
bit to protect any number of data bits. Why the difference? The RAID code is an ‘erasure code’; 
it assumes that a data bit can have one of three values: 0, 1, and error. Parity means that the xor 
of all the bits is 0, so that any bit is equal to the xor of all the other bits. Thus any single error 
bit can be reconstructed from the others. This scheme is appropriate for disks, where there’s 
already a very strong code detecting errors in a single sector. A Hamming code, on the other 
hand, needs many more check bits to detect which bit is bad as well as its correct value. 

Another completely general form of replication is to have several replicas that operate in 
lockstep and interact with the rest of the world only between steps. At the end of each step, 
compare the outputs of the replicas. If there’s a majority for some output value, that value is the 
output of the replicated system, and any replica that produced a different value is declared faulty 
and should be repaired. At least three replicas are needed for this to work; when there are exactly 
three it’s called ‘triple modular redundancy’, TMR for short. A common variation that simplifies 
the handling of outputs is ‘pair and spare’, which uses four replicas arranged in two pairs. If the 
outputs of a pair disagree, it is declared faulty and the other pair’s output is the system output. 

A computer system has three major components: processing, storage, and communication. Here 
is how to apply redundancy to each of them. 

•	 In communication, intermittent errors are common and retry is simply retransmitting a 
message. If messages can take different paths, even the total failure of a component often 
looks like an intermittent error because a retry will use different components. It’s also 
possible to use error-correcting codes (called ‘forward error correction’ in this context), but 
usually the error rate is low enough that this isn’t cost effective. 
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•	 In storage, retry is not so easy but error correcting codes still work well. ECC memory using 
Hamming codes, the elaborate codes used on disk drives, and RAID disks are all examples of 
this. Straightforward replication, usually called ‘mirroring’, is also popular. 

•	 In processing, error correcting codes usually can’t handle arbitrary state transitions. Retry is 
only possible if you have the old state, so it’s usually coded in a transaction system. The 
replicated state machines that we studied in handout 18 are fully general, however, and can 
make any kind of processing highly available. Using these methods to replicate a processor at 
the instruction set level is tricky but possible.1 People also use lockstep replication at the 
instruction level, usually pair-and-spare, but such systems can’t use standard components 
above the chip level, and it’s very expensive to engineer them without single points of 
failure. As a result, they are expensive and not very successful. 

War stories 

Availability is a property of an entire system, hardware, software, and operations. There are lots 
of ways that things can go wrong. It’s instructive to study some examples. 

Ariane crash 

The first flight of the European Space Agency’s Ariane 5 rocket self-destructed 40 seconds into 
the flight. The sequence of events that led to this $400 million failure is instructive. In reverse 
temporal order, it is roughly as follows, as described in the report of the board of inquiry.2 

1.	 The vehicle self-destructed because the solid fuel boosters started to separate from the main 
vehicle. This decision to self-destruct was part of the design and was carried out correctly. 

2.	 The boosters separated because of high aerodynamic loads resulting from an angle of attack 
of more than 20 degrees. 

3.	 This angle of attack was caused by full nozzle deflections of the solid boosters and the main 
engine. 

4.	 The nozzle deflections were commanded by the on board computer (OBC) software on the 
basis of data transmitted by the active inertial reference system (SRI 2; the abbreviation is 
from the French for ‘inertial reference system’). Part of the data for that time did not consist 
of proper flight data, but rather showed a diagnostic bit pattern of the computer of SRI 2, 
which was interpreted by the OBC as flight data. 

5.	 SRI 2 did not send correct flight data because the unit had declared a failure due to a software 
exception. 

1 Hypervisor-based fault tolerance, T. Bressoud and F. Schneider; ACM Transactions on. Computing Systems 14, 1 

(Feb. 1996), pp 80 – 107.

2 This report is a model of clarity and conciseness. You can find it at 

http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html and a summary at

http://www.siam.org/siamnews/general/ariane.htm. 
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6.	 The OBC could not switch to the back-up SRI (SRI 1) because that unit had already ceased 
to function during the previous data cycle (72-millisecond period) for the same reason as SRI 
2. 

7.	 Both units shut down because of uncaught internal software exceptions. In the event of any 
kind of exception, according to the system spec, the failure should be indicated on the data 
bus, the failure context should be stored in an EEPROM memory (which was recovered and 
read out), and, finally, the SRI processor should be shut down. This duly happened. 

8.	 The internal SRI software exception was caused during execution of a data conversion from a 
64-bit floating-point number to a 16-bit signed integer value. The value of the floating-point 
number was greater than what could be represented by a 16-bit signed integer. The result was 
an operand error. The data conversion instructions (in Ada code) were not protected from 
causing operand errors, although other conversions of comparable variables in the same place 
in the code were protected. It was a deliberate design decision not to protect this conversion, 
made because the protection is not free, and analysis had shown that overflow was 
impossible. In retrospect, of course, we know that the analysis was faulty; since it was not 
preserved, we don’t know what was wrong with it. 

9.	 The error occurred in a part of the software that controls only the alignment of the strap-
down inertial platform. The results computed by this software module are meaningful only 
before liftoff. After liftoff, this function serves no purpose. The alignment function is 
operative for 50 seconds after initiation of the flight mode of the SRIs. This initiation 
happens 3 seconds before liftoff for Ariane 5. Consequently, when liftoff occurs, the function 
continues for approximately 40 seconds of flight. This time sequence is based on a 
requirement of Ariane 4 that is not shared by Ariane 5. It was left in to minimize changes to 
the well-tested Ariane 4 software, on the grounds that changes are likely to introduce bugs. 

10. The operand error occurred because of an unexpected high value of an internal alignment 
function result, called BH (horizontal bias), which is related to the horizontal velocity sensed 
by the platform. This value is calculated as an indicator for alignment precision over time. 
The value of BH was much higher than expected because the early part of the trajectory of 
Ariane 5 differs from that of Ariane 4 and results in considerably higher horizontal velocity 
values. There is no evidence that any trajectory data were used to analyze the behavior of the 
unprotected variables, and it is even more important to note that it was jointly agreed not to 
include the Ariane 5 trajectory data in the SRI requirements and specifications. 

It was the decision to shut down the processor that finally proved fatal. Restart is not feasible 
since attitude is too difficult to recalculate after a processor shutdown; therefore, the SRI 
becomes useless. The reason behind this drastic action lies in the custom within the Ariane 
program of addressing only random hardware failures. From this point of view, exception- or 
error-handling mechanisms are designed for random hardware failures, which can quite 
rationally be handled by a backup system. But a deterministic bug in software will happen in the 
backup system as well. 

Handout 28. Availability and Replication 4 



6.826—Principles of Computer Systems 2002 

Maxc/Alto memory 

The following extended saga of fault tolerance in computer RAM happened to my colleagues in 
the Computer Systems Laboratory of the Xerox Palo Alto Research Center. Many other people 
have had some of these experiences. 

One of the lab’s first projects (in 1971) was to build a time-sharing computer system named 
Maxc. Intel had just started to sell a 1024-bit semiconductor RAM chip3, the Intel 1103, and it 
promised to be a cheap and reliable way to build the main memory. Of course, since it was new, 
we didn’t know whether it would really work. However, we knew that for about 20% overhead 
we could use Hamming codes to implement single error correction and double error detection, so 
that the memory system would work even if individual chips hard a rather high failure rate. We 
did this, and the memory was solid as a rock. We never saw any failures, or even any double 
errors. 

When the time came to design the Alto personal workstation in 1972, we used the same 1103 
chips, and indeed the same memory boards. However, the Alto memory was much smaller (128 
KB instead of 3 MB) and had 16 bit words rather than the 40 bit words of Maxc. As a result, 
error correction would have added much more overhead, so we left it out; we did provide a parity 
bit for each word. For about 6 months the machines performed flawlessly, running a fairly 
vanilla minicomputer operating system that we had built, which provided a terminal on the 
screen that emulated a teletype. 

It was only when we started to run the Bravo full-screen editor (the prototype for Microsoft 
Word) that we started to get parity errors. These errors were puzzling, because the chips were 
identical to those used without incident in Maxc. When we looked closely at the Maxc system, 
however, we discovered that although the ECC circuits had been designed to report both 
corrected errors and uncorrectable errors, the software logged only uncorrectable errors; 
corrected errors were being ignored. When logging of corrected errors was implemented, it 
turned out that the 1024-bit chips were actually failing quite often, and the error-correction 
circuitry was working hard to set things right.4 

Investigation revealed that 1103’s are pattern-sensitive: sometimes a bit will flip when the values 
of surrounding bits are just so. The reason we didn’t see them on the Alto in the first 6 months is 
that you just don’t get enough patterns on a single-user machine that isn’t being very heavily 
used. Bravo put up lots of interesting stuff on the screen, which used about half the main 
memory to store values for its pixels, and thus Bravo made enough different patterns to tickle the 
chips. With some effort, we were able to write memory test programs that ran on the Alto, using 
lots of random test patterns, and also found errors. We never saw these errors in the routine 
testing that we did when the boards were manufactured. 

3 One million times smaller than the tate-of-the-art RAM chip of 2002. 

4 A couple of years later we had a similar problem with Maxc. In early January people noticed that the machine 

seemed to be slow. After a while, someone looked at the console log and discovered that over the holidays the 

memory had developed a permanent double (uncorrectable) error. The software found this error and reconfigured 

the memory without the bad region; this excluded one quarter of the memory from the running system, which 

considerably increased the amount of paging. Normally no one looked at the console log, so no one knew that this 

had happened. 
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Lesson: Fault-tolerant systems tend to become fault-intolerant, because faults that are tolerated 
don’t get fixed. It’s essential to monitor the faults and repair the faulty components even though 
the system is still working perfectly. Without monitoring, there’s no way to know whether the 
system is operating with a large or a small safety margin. 

When we built the Alto 2 two years later in 1975, we used 4k RAM chips, and because of the 
painful experience with the 1103, we did put in error correction. The machine worked flawlessly. 
Two years later, however, we discovered that in one-quarter of the memory, neither error 
correction nor parity was working at all. The chips were much better that 1103’s, and in addition, 
many single-bit errors don’t actually cause any observed failure of the software. On Alto 1 we 
knew about every single-bit error because of the parity. On Alto 2 in 1/4 of the memory we 
didn’t know. Perhaps there were some failures that had no visible impact. Perhaps there were 
failures that crashed programs, but they were attributed to bugs in the software. 

Lesson: To test a fault-tolerant system, you have to inject all the faults the system is supposed to 
tolerate. You also need to detect all faults, and you have to test the detection mechanism as well. 

I believe this is why most PC manufacturers don’t put parity on the memory: it isn’t really 
needed because chips are pretty reliable, and if parity errors are reported the PC manufacturer 
gets blamed, whereas if random things happen Microsoft gets blamed. 

Lesson: Beauty is in the eye of the beholder. The various parties involved in the decisions about 
how much failure detection and recovery to code do not always have the same interests. 

Replication 

In the remainder of this handout we present specs and code for a variety of replication 
techniques. We start with two specs of a “strongly consistent” replicated service, which looks 
almost like a single copy to its clients. The complication is that some client requests can fail; the 
second spec constrains the failure behavior more than the first. Then we give two codes, one 
based on primary copy and the other based on voting. Finally, we give a spec of a “loosely 
consistent” service, which is much weaker but allows much cheaper highly available code. 

Specs for consistent replication 

A consistent service executes actions just like a non-replicated service: each action is executed at 
most once, and all clients see the same sequence of actions. However, the response to a client's 
request for an action can also be that the action “failed”; in this case, the client does not know 
whether or not the action was actually done. The client may be able to figure out whether or not 
it was done by executing more actions (for example, if the action leaves an unambiguous record 
in the state, such as a sequence number), but the failed response gives no information. The idea 
is that a failed response may be caused by failure of the replica doing the action, or of the 
communication channel between the client and the service. 

The first spec places no constraints on the timing of failed actions. If a client requests an action 
and receives a failed response, the action may be performed at any later time. In addition, a 
failed response can be generated at any time. 
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The second spec still allows actions with failed responses to happen at any later time. 
However, it allows a failed response only if the system fails (or is recovering from a failure) 
during the execution of an action. 

In practice, some constraints on when failed actions are performed would be desirable, but it 
seems hard to write a general spec of such constraints that applies to a wide range of code. For 
example, a client might like to be guaranteed that all actions, including failed actions, are done in 
the order in which the client requests them. Or, the client might like the same kind of ordering 
guarantee, but covering all clients rather than each individual one separately. 

Here is the first spec, which allows failed responses at any time. It is modeled on the spec for 
sequential transactions in handouts 7 and 19. 

MODULE Replication [
V, % Value 
S WITH { s0: () -> S } % State 
] EXPORT Do = 

TYPE 	VS = [v, s]
A = S -> VS % Action 

VAR s := S.s0() % State of service 
pending : SET A := {} % Failed actions to be done. 

APROC Do(a) -> V RAISES {failed} = << % Do a or raise failed 
VAR vs := a(s) | s := vs.s; RET vs.v

[] pending \/ := {a}; RAISE failed >> 

THREAD DoPending() = % Do or drop a pending failed a 
DO << VAR a :IN pending |

pending - := {a};
BEGIN s := a(s).s [] SKIP END >> % Do a or drop it 

[] SKIP OD 

END Replication 

Here is the second spec. Intuitively, we would like a failed response only if the service fails (by a 
crash or a network failure) sometime during the execution of the action, or if the action is 
requested while the system is recovering from a failure. The body of Do is a single atomic action 
which happens between the invocation and the return; if down is true during that interval, one 
possible outcome of the body is to raise failed. Note that an action that has made it into 
pending can be executed at an arbitrary later time, perhaps when down = false. 

MODULE Replication2 [ V, S as in Replication ] EXPORT Do = 

TYPE 	VS = [v, s]
A = S -> VS % Action 

VAR s := S.s0() % State of service 
pending : SET A := {} % failed actions to be done. 
down := false % true when system has failed 

% and not finished recovering 
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PROC Do(a) -> V RAISES {failed} = << % Do a or raise failed 
% Raise failed only if the system is down sometime during the execution. Note that this isn’t an APROC 

VAR vs := a(s) | s := vs.s; RET vs.v
[] down => pending \/ := {a}; RAISE failed >> 

% Thread DoPending as in Replication 

THREAD Fail() = DO << down := true >>; << down := false >> OD
% Happens whenever a node crashes or the network fails. 

END Replication2 

There are two general ways of coding a replicated service: primary copy (also known as master-
slave, or primary-backup), and voting (also known as quorum consensus). Here we sketch the 
basic ideas of each. 

Primary copy 

The primary copy algorithm we give here is based on one invented by Liskov and Oki.5 It codes 
a replicated state machine along the lines described in handout 18, using the Paxos consensus 
algorithm to decide the sequence of state machine actions. When things are working well, the 
clients send action requests to the replica that is currently the primary; that replica uses Paxos to 
reach consensus among all the replicas about the index to assign to the requested action, and then 
responds to the client. We only assign an index j to an action if all prior indices have been 
assigned to actions, and no later ones. 

For simplicity, we assume that every action is unique, and use the action to identify all the 
messages and outcomes associated with it. In practice, clients accomplish this by tagging each 
action with a unique ID and use the ID for this purpose. 

MODULE PrimaryCopy [ % implements Replication 
V, S as in Replication
C, % Client names 
R ] EXPORT Do = % Replica (server) names 

TYPE 	VS = [v, s]
A = S -> VS % Action 
X = ENUM[failed] % eXception result 
Data = (Null + V + X) % Data in message 
P = (R + C) % All process names 
M = [sp: P, rp: P, a, data] % Message: sender, receiver, action, data 
J = Nat % Action index: 1, 2, ... 

There is a separate instance of consensus for each action index J. Its outcome records the agreed-
upon jth action. We achieve this by making the Consensus module of handout 18 into a CLASS 
with A as V. The Actions function maps from J to instances of the class. The processes in R run 
consensus. In a real system the primary would also be both the leader and an agent of the 
consensus algorithm, and its state would normally include the outcomes of all the already 

5 B. Liskov and B. Oki, Viewstamped replication: A new primary copy method to support highly available 
distributed systems, Proc. 7th ACM Conference on Principles of Distributed Computing, Aug. 1988. 
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decided actions (or at least the recent ones) as well as the next available action index. This means 
that all the old outcomes will be available, so that Outcome() will never return nil for one of 
them. We assume this in what follows, and accordingly make outcome a function. 

CLASS ReplCons EXPORT allow, outcome = 
VAR outcom : (A + Null) := nil 

APROC allow(a) = << outcome = nil => outcom := a [] SKIP >>
FUNC outcome() -> (A + Null) = << RET outcom >> 

END ReplCons 

We abstract the communication as a set of messages in transit among all the clients and replicas. 
This could be coded by a set of the unreliable channels of handout 21, one in each direction for 
each client-replica pair; this is the way most real systems do it. Note that the channel can lose or 
duplicate both requests and responses. The channel connects the Do procedure with the replica. 
The Do procedure, which is the client side of the channel, deals with losses by retransmitting. If 
there’s a failure, the result value may be lost; in this case Do raises failed as required by the 
Replication spec. 

The client code keeps trying to get a replica to handle its request. The replica proceeds as though 
it is the primary. If there’s more than one primary, there will be contention for action indexes, so 
this is not desirable. Since we are using Paxos, there should be only one primary at a time. In 
fact, the primary and the Paxos leader should be the same. Usually the primary has a lease, which 
has some advantages discussed later. For simplicity, we show each replica handling only one 
request at a time; in practice, of course, they could be batched. In spite of this, there can be lots 
of requests in progress at a time, since several replicas may be handling client request 
simultaneously if there is confusion about who is the primary. 

We begin with code in which the replicas only keep track of the actions, that is, the results of 
consensus. This is not very practical, since it means that they have to recompute the current state 
from scratch for every request, but it is simple; we did the same thing when introducing 
transactions in handout 7. Later we consider the complications of keeping track of the current 
state. 

VAR 	actions : J -> ReplCons := InitActions() 
msgs : SEQ M := {} % multiset of messages in transit 
working : P -> (A + Null) := {} % history, for abstraction function 

% ABSTRACTION FUNCTION: 
Replication.s = AllActions(LastJ())(S.s0()).s
Replication.pending = working.rng \/ {m :IN msgs | m.data = nil | m.a}

– Outcome.rng – {nil} 

% INVARIANT: (ALL j :IN 1 .. LastJ() | Outcome(j) # nil) 


% The client

PROC Do(a, c) -> V RAISES {failed} = % First choose a new uid


working(c) := a; % Just for the abstraction function 
DO VAR primary: R | % Guess the current primary 

Send(c, primary, a, nil);
VAR a', data | (primary, a', data) := Receive(c); 
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IF a' = a => IF data IS V => RET data [*] RAISE failed FI
[*] SKIP FI % Discard responses that aren’t to a 

[] SKIP % if timeout on response 
[] RAISE failed % if too many retries 
OD; working(c) := nil % Just for the abstraction function 

% The server replicas

THREAD DoActions(r) = % one for each replica


DO VAR c, a, data | % of current request 
<< (c,a,data):=Receive(r); working(r):=a >>; % Primary: receive request 
data := DoAction(id, a); Send(r, c, a, data) % Do it and send response 
working(r) := nil % Just for the abstraction function 

OD 

PROC DoAction(id, a) -> Data =
DO VAR j | % Keep trying until id is done. 

j := LastJ(); % Find last completed j
IF a IN Outcome.rng => RET failed % Has a been done already? If so, failed. 
[*] j + := 1; actions(j).allow(a); % No. Try for consensus on a as action j

Outcome(j) # nil => % Wait for consensus 
IF Outcome(j) = a => RET Value(j) % If we got j, Return its result. 
[*] SKIP FI % Another action got j. Try again. 

FI 
OD 

% These routines compute useful functions of the action history. 

FUNC Value(j) -> V = RET AllActions(j)(S.s0()).v
% Compute value returned by j’th action; needs all outcomes <= j 

FUNC AllActions(j) -> A = RET Compose({j' :IN 1 .. j | | Outcome(j')})
% The composition of all the actions through j. Type error if any of them is nil. 

FUNC Compose(aq: SEQ A) -> A =
aq # {} => RET aq.head * (* : {a :IN aq.tail | | (\ vs | a(vs.s))}) 

FUNC LastJ() -> J = RET {j' | Outcome(j') # nil}.max [*] RET 0
% Last j for which consensus has been reached. 

FUNC Outcome(j) -> (A + Null) = RET actions(j).outcome() 

PROC InitActions() -> (J -> ReplCons) = % Make a ReplCons for each j
VAR acts: J -> ReplCons := {}, rc: ReplCons |

DO VAR j | ~ acts!j => acts(j) := rc.new OD; RET acts 

% Here is the standard unreliable channel. 
APROC Send(p1, p2, id, data) = << msgs := msgs \/ {M{p1, p2, id, data}} >>
APROC Receive(p) -> (P, ID, Data) = << VAR m :IN msgs | % Receive msg for p

m.rp = p => msgs - := {m}; RET (m.sp, m.id, m.data) >>
THREAD LoseOrDup() =

DO << VAR m :IN msgs | BEGIN msgs - := {m} [] msgs \/ := {m} END >> [] SKIP OD 

END PrimaryCopy 

There is no explicit code for crashes. A crash simply resets the control state. For the client, this 
has the same practical effect as getting a failed response: you don’t know whether the action 
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happened or not. For the replica, either it got consensus or it didn’t. If it did, the action has 
happened; if not, it hasn’t. Either way, client will keep trying if the replica hasn’t already sent a 
response that isn’t lost in the channel. The client may see a failed response or it may get the 
result value. 

Instead of failing if the action has already been done, we could try to return the proper result. It’s 
unreasonably expensive to guarantee to always do this, but it’s quite practical to do it for recent 
requests. This changes one line of DoAction: 

IF a IN Outcome.rng =>
BEGIN RET failed [] RET Value({j | Outcome(j) = a}.choose) END 

This code is completely non-deterministic about retransmissions. As usual, it’s necessary to be 
prudent in practice, especially since talking to too many replicas may cause needless failed 
responses. We have omitted any details about how the client finds the current primary; in 
practice, if the client talks to a replica that isn’t the primary, that replica can redirect the client to 
the current primary. Of course, this redirection might happen several times if the system is 
unstable. 

In this code replicas keep actions forever, both so that they can reconstruct the state and so that 
they can detect duplicate requests. When replicas keep the current state they don’t need all the 
actions for that, but they still need them to detect duplicates. The reliable messages of handout 26 
can’t help with this, because they work only when a sender is talking to a single receiver, and 
here there are many receivers, one for each replica. . Real systems usually don’t keep actions 
forever. Instead, they time them out, and often they tie each action to the current choice of 
primary, so that the action gets a failed response if the primary changes during its execution. To 
reconstruct the state of a very old replica, they copy the entire state from some other replica and 
then apply the most recent actions to bring it fully up to date. 

The code above doesn’t keep track of either the current state or the current action, but 
reconstructs them explicitly from the sequence of actions, using LastJ and AllActions. In a real 
system, the primary maintains both its idea of the last action index j and a corresponding state s. 
These satisfy the obvious invariant. In addition, the primary’s j is the latest one, except while the 
primary is getting consensus, which it can’t do atomically: 

VAR 	jr : R -> J := {* -> 0}
sr : R -> S := {* -> S.s0()} 

INVARIANT (ALL r | sr(r) = AllActions(jr(r))(S.s0()).s)
INVARIANT jr(primary) = LastJ() \/ primary is getting consensus 

This means that once the primary has obtained consensus on the action for the next j, it can 
update its state and return the corresponding result. If it doesn’t obtain this consensus, then it 
isn’t a legitimate primary. It needs to find out whether it should still be primary, and if so, bring 
its state up to date. The CatchUp procedure does the latter; we omit the code that chooses the 
primary. In practice we don’t keep the entire action history, but catch up a severely outdated 
replica by copying the state from a current one; we omit this code as well. 
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PROC DoAction(id, a) -> Data =
DO VAR j := jr(r) | % Don’t need to search for j. 

IF << a IN Outcome.rng => RET failed % Has a been done already? If so, failed. 
[*] j + := 1; actions(j).allow(a); % No. Try for consensus on a as action j

Outcome(j) # nil => % Wait for consensus 
IF Outcome(j)=a => VAR vs := a(sr(r)) | % If we got j, return its result. 

<< sr(r) := vs.s; jr(r) := j >>; RET vs.v
[*] CatchUp(r) FI % Another action got j. Try again. 

FI 
OD 

PROC Catchup(r) = % Apply actions until you run out 
DO VAR j := jr(r) + 1, o := Outcome(j) |

o = nil => RET;
sr(r) := (o AS a)(sr(r)).s; jr(r) := j

OD 

Note that the primary is still running consensus for each action. This is necessary so that another 
replica can take over should the primary fail. It can, however, use the optimization for a 
sequence of consensus actions that is described in handout 18; this means that each consensus 
takes only one round-trip. 

When they are running normally, the other replicas will run Catchup in the background, based 
on the information they get from the consensus. If a replica gets out of touch with the consensus, 
it can run the full Catchup to get back up to date. 

We have assumed that a replica can do each action atomically. In general this will require the 
replica to use a transaction. The logging needed for the transaction can also provide the storage 
needed for the consensus outcomes. 

A further optimization is for the primary to obtain a lease. As we saw in handout 18, this means 
that it can respond to read-only requests from its copy of the state, without needing to run 
consensus. Furthermore, the other replicas can be simple read-write memories rather than active 
agents; in particular, they can be disk drives. Of course, if the primary fails we have to find 
another computer to act as primary. 

Voting 

The voting algorithm sketched here is based on one invented by Dave Gifford.6 The idea is that 
each replica has some version of the state. Versions are indexed by J just as in PrimaryCopy and 
each Do produces a new version. To read, you read the state of some copy of the latest version. 
To write, you find a copy of the current (latest) version, apply the action to create a new version, 
and write the new version into enough replicas. A distributed transaction makes this operation 
atomic. A real system does the updates in place, applying the action to enough replicas of the 
current version; it may have to bring some replicas up to date first. 

Warning: Because Voting is built on distributed transactions, it isn’t easy to compare it to 
PrimaryCopy, which is only built on the basic Consensus primitive. 

6 D. Gifford, Weighted voting for replicated data. ACM Operating Systems Review 13, 5 (Oct. 1979), pp 150-162. 
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The definition of ‘enough’ must ensure that both reads and writes find the latest version. The 
standard way to do this is to insist that both examine a majority of the replicas, where ‘majority’ 
is defined so that any two majorities intersect. Here majority is renamed ‘quorum’ to emphasize 
the fact that it may not be a numerical majority, and we allow for separate read and write 
quorums, since we only need to assure that any read or write sees any previous write, not 
necessarily any previous read. This distinction allows us to bias the code to make reads easier at 
the expense of writes, or vice versa. For example, we could make every replica a read quorum; 
then the only write quorum is all the replicas. This choice makes it easy to do a read, since you 
only need to reach one replica. On the other hand, writes are expensive, and in fact impossible if 
even one replica is down. 

There are many other ways to arrange the quorums. One simple scheme is to arrange the 
processes in a rectangle, make each row a read quorum, and make each row-column pair a write 
quorum. For a square with n replicas, a read quorum has n1/2 replicas and a write quorum 
2 n1/2 - 1. By changing the shape of the rectangle you can favor reads or writes. If there are lots 
of replicas, these quorums are much smaller than a majority. 

Note that the failure of an entire quorum makes the system unavailable. So the price paid for 
small quorums is that a small number of failures makes the system fail. 

We abstract away from the details of communication and atomicity. The algorithm assumes that 
all the replicas can be updated atomically by a write, and that a replica can be read atomically. 
These atomic operations can be coded by the distributed transactions of handout 27. The 
consensus that is necessary for replication is hiding in the two-phase commit. 

The abstract state is the state of a current replica. The invariant says that every rq has a current 
version, there’s a wq in which every version is current, and two replicas with the same version 
also have the same state. 

MODULE Voting [ as in Replication, R ] EXPORT Do = % Replica (server) names 

TYPE QS = SET SET R % Quorum Sets 
RWQ = [r: QS, w: QS]
J = Int % Version number: 1, 2, ... 

VAR 	sr : R -> S := (* -> S.s0()) % States of replicas 
jr : R -> J := (* -> 0) % Version Numbers of replicas 
rwq := Quorums() % Read QuorumS 

% ABSTRACTION FUNCTION: replication.s = sr({r | jr(r) = jr.rng.max}.choose) 
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% INVARIANT: (ALL rq :IN rwq.r | jr.restrict(rq).rng.max = jr.rng.max)
/\ (EXISTS wq :IN rwq.w | jr.restrict(wq).rng = (jr.rng.max}
/\ (ALL r1, r2 | jr(r1) = jr(r2) ==> sr(r1) = sr(r2)) 

APROC Do(a) -> V = <<
IF ReadOnly(a) => % Read, not update 

VAR rq :IN rwq.r,
j := jr.restrict(rq).rng.max, r | jr(r) = j =>
RET a(sr(r)).v

[] VAR wq :IN rwq.w, % Update action 
j := jr.restrict(wq).rng.max, r | jr(r) = j =>
j := j + 1; % new version number 
VAR vs := a(sr(r)), s := vs.s |

DO VAR r' :IN wq | jr(r') < j =>sr(r') := s; jr(r') := j OD;
RET vs.v 

FI >> 

FUNC ReadOnly(a) -> Bool = RET (ALL s | a(s).s = s) 

APROC Quorums () -> RWQ = <<
% Chooses sets of read and write quorums such that every write quorum intersects every read or write quorum. 

VAR rqs: QS, wqs: QS | (ALL wq :IN wqs, q :IN rqs \/ wqs | q/\wq # {}) =>
RET RWQ{rqs, wqs} >> 

END Voting 

Note that because the read and write quorums intersect, every read sees all the preceding writes. 
In addition, any two write quorums must intersect, to ensure that writes are done with increasing 
version numbers and that a write sees the state changes made by all preceding writes. When the 
quorums are simple majorities, every quorum is both a read and a write quorum, so this 
complication is taken care of automatically. In the square scheme, however, although a read 
quorum can be a single row, a write quorum cannot be a single column, even though that would 
intersect with every row. Instead, a write quorum must be a row plus a column. 

It’s possible to reconfigure the quorums during operation, provided that at least one of the new 
write quorums is made completely current. 

APROC NewQuorums() = <<
VAR new := Quorums(), j:= jr.rng.max, s:= sr({r | jr(r) = jr.rng.max}.choose) |

VAR wq :IN new.w | DO VAR r :IN wq | jr(r) < j => sr(r) := s OD;
rwq := new 

Loosely consistent replication 

Some services have availability and response time constraints that make it impossible to 
maintain sequential consistency, the illusion that there is a single copy. Instead, each operation is 
initially processed at one replica, and the replicas “gossip” in the background to keep each other 
up to date about the updates that have been performed. Such strategies are used in name services7 

like DNS, for distributing information such as password files, and for updating system binaries. 
We sketched a spec for this in the section on coherence in handout 12 on naming; we repeat it 

7 also called ‘directories’ in networks, and not to be confused with file system directories 
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here in a form that parallels our other specs. Another name for this kind of loose replication is 
‘eventual consistency’. 

Propagating updates in the background means that when an action is processed, the replica 
processing it might not know about some earlier actions. LooseRepl reflects this by allowing any 
subsequence of the earlier actions to determine the response to an action. Such behavior is 
possible (though unlikely) in distributed naming systems such as Grapevine8 or the domain name 
service9. The spec limits the nondeterminism by requiring a response to include the effects of all 
actions executed before the most recent Sync. If Sync’s are done reasonably frequently, the 
incoherence won’t get out of hand. A paper by Lampson10 goes into much more detail. 

For this to make sense as the system evolves, the actions must be defined on every state, and the 
result must be independent of the order in which the actions are applied (that is, they must all 
commute). In addition, it’s simpler if the actions are idempotent (for the same reason that 
idempotency simplifies transaction redo recovery), and we assume that as well. Thus 

(ALL aq: SEQ A, aa: SET A | aq.rng = aa ==> Compose(aq) = Compose(aa.seq)) 

You can always get idempotency by tagging each action with a unique ID, as we saw with 
transactions. To make the standard read and write operations on path names described in 
handout 12 commutative and idempotent, tag each name in the path name with a version number 
or timestamp, both in the actions and in the state. 

We write the spec in two equivalent ways. The first is in the style of handout 7 on disks and file 
systems and handout 12 on naming; it keeps track of all the possible states that the service can 
get into. It would be simpler to define Sync as ss := {s} and get rid of ssNew, as we did in 
handout 7, but this is too strong for the code we have in mind. Furthermore, the extra strength 
doesn’t help the clients. DropFromSS doesn’t change the behavior of the spec, since it only drops 
states that might not be used anyway, but it does make it easier to write the abstraction function. 

MODULE LooseRepl [ V, S WITH {s0: ()->S] EXPORT Do, Sync = 
TYPE 	VS = [v, s]

A = S -> VS % Action 

VAR 	s : S := S.s0() % latest state 
ss : SET S := {S.s0()} % all States since end of last Sync
ssNew : SET S := {S.s0()} % all States since start of Sync 

APROC Do(a) -> V = <<
s := a(s).s; ss := Extend(ss, a); ssNew := Extend(ssNew, a);
VAR s0 :IN ss | RET a(s0).v >> % choose a state for result 

PROC Sync() = ssNew := {s}; << VAR s0 :IN ssNew | ss := {s0} >>; ssNew := {} 

THREAD DropFromSS() = 

8 A. Birrell at al., Grapevine: An exercise in distributed computing. Comm. ACM 25, 4 (Apr. 1982), pp 260-274.

9 RFC 1034/5. You can find these at http://www.rfc-editor.org/isi.html. If you search the database for them, you will 

see information about updates.

10 B. Lampson, Designing a global name service, Proc. 4th ACM Symposium on Principles of Distributed 

Computing, Minaki, Ontario, 1986, pp 1-10. You can find this at http://research.microsoft.com/lampson. 
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DO << VAR s1 :IN ss, s2 :IN ssNew | ss - := {s1}; ssNew - := {s2} >>
[] SKIP OD 

FUNC Extend(ss: SET S, a) -> SET S = RET ss \/ {s' :IN ss | | a(s').s} 

END LooseRepl 

The second spec remembers the state at the last Sync instead of the current state, and keeps track 
explicitly of the actions done since the last Sync. After a Sync all the actions that happened 
before the Sync started are included in s, together with some subset of later ones. 

MODULE LooseRepl2 [ V, SA WITH {s0: ()->SA] EXPORT Do, Sync = 
TYPE 	S = SA WITH {"+":=Apply}

VS, A as in LooseRepl
VAR 	s : S := S.s0() % synced State (not latest) 

aa : SET A := {} % All Actions since last sync
aaOld : SET A := {} % All Actions between last two Syncs 

APROC Do(a) -> V = <<
VAR aa0 : SET A | aa0 <= aa \/ aaOld => % choose actions for result 

aa \/ := {a}; RET a((s + aa0)).v >> 

PROC Sync() =
<< aaOld := aa; aa := {} >>; << s := s + aaOld; aaOld := {} >> 

THREAD DropFromAA() =
DO << VAR a :IN aa \/ aaOld | s := s + {a}; aa - := {a}; aaOld - := {aa} >>
[] SKIP
OD 

FUNC Apply(s0, aa0: SET A) -> S = RET PrimaryCopy.Compose(aa0.seq)(s).s 

END LooseRepl2 

The picture shows how the set of possible states evolves as three actions are added. It assumes no 
actions are added while Sync 6 was running, so that the only state at the end of Sync 6 is s. 

The abstraction function from LooseRepl2 to LooseRepl constructs the states from the Synced 
state and the actions: 

ABSTRACTION FUNCTION 
LooseRepl.s = s + aa 

LooseRepl.ss = {aa1: SET A | aa1 <= aa | s + aa1}

LooseRepl.ssNew = {aa1: SET A | aa1 <= aa | s + (aa1 \/ aaOld)} 


We leave the abstraction function from LooseRepl to LooseRepl2 as an exercise. 

The standard code has a set of replicas, each with a current state and a set of actions accumulated 
since the start of the last Sync; note that this is different from either spec. Typically actions have 
the form “set the value of name n to v”. Any replica can execute a Do action. During normal 
operation the replicas send actions to each other with Gossip; more detailed code would send a 
(or a set of a’s) from r1 to r2 in a message. Sync collects all the recent actions and distributes 
them to every replica. We omit the complications of catching up a replica that has missed some 
Syncs and of keeping track of the set of replicas. 
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Sync 7 

% implements LooseRepl2
% Replica (server) names 

% Action

% Sync index: 1, 2, ... 


% latest Sync here

% current State here

% history: state at last Sync

% history: state at last Sync

% actions since last Sync here 


Sync 6 

MODULE LRImpl [ as in Replication, 
R ] EXPORT Do, Sync = 

TYPE 	VS 
A 
J 

VAR 	jr 
sr 
hsrOld 
hsOld 
aar 

= 
= 
= 

: 
: 
: 
: 
: 

[v, s]

S -> VS 

NAT 


R -> J := {* -> 0}

R -> S := {* -> S.s0()}

R -> S := {* -> S.so()}

S := S.so()

R -> SET A := {* -> {}} 


APROC Do(a) -> V = << VAR r, vs := a(sr(r)) |
aar(r) \/ := {a}; sr(r) := vs.s; RET vs.v >> 

THREAD Gossip(r1, r2) =
DO VAR a :IN aar(r1) – aar(r2) | aar(r2) \/ := a; sr(r2) := a(sr(r2))
[] SKIP OD 

PROC Sync() =
VAR aa0: SET A := {},

done: R -> Bool := {* -> false},
j | j > jr.rng.max =>

DO VAR r | jr(r) < j => % first pass: collect all actions 
<< jr(r) := j; aa0 \/ := aar(r); aar(r) := {} >> OD;

DO VAR r | ~ done (r) => % second pass: distribute all actions 
<< sr(r) := sr(r) \/ aa0; done (r) := true >> OD 

END LRImpl 
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