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30.  Concurrent Caching 

In the previous handout we studied the fault-tolerance aspects of replication. In this handout we 
study many of the performance and concurrency aspects, under the label ‘caching’. A cache is of 
course a form of replication. It is usually a copy of some ‘ground truth’ that is maintained in 
some other way, although ‘all-cache’ systems are also possible. Normally a cache is not big 
enough to hold the entire state (or it’s not cost-effective to pay for the bandwidth needed to get 
all the state into it), so one issue is how much state to keep in the cache. The other main issue is 
how to keep the cache up-to-date, so that a read will obtain the result of the most recent write as 
the Memory spec requires. We concentrate on this problem. 

This handout presents several specs and codes for caches in concurrent systems. We begin with a 
spec for CoherentMemory, the kind of memory we would really like to have; it is just a function 
from addresses to data values. We also specify the IncoherentMemory that has fast code, but is 
not very nice to use. Then we show how to change IncoherentMemory so that it codes 
CoherentMemory with as little communication as possible. We describe various strategies, 
including invalidation-based and update-based strategies, and strategies using incoherent 
memory plus locking. 

Since the various strategies used in practice have a lot in common, we unify the presentation 
using successive refinements. We start with cache code GlobalImpl that clearly works, but is 
not practical to code directly because it is extremely non-local. Then we refine GlobalImpl in 
stages to obtain (abstract versions of) practical code.  

First we show how to use reader/writer locks to get a practical version of GlobalImpl called a 
coherent cache. We do this in two stages, an ideal cache CurrentCaches and a concrete cache 
ExclusiveLocks. The caches change the guards on internal actions of IncoherentMemory as 
well as on the external read and write actions, so they can’t be coded externally, simply by 
adding a test before each read or write of IncoherentMemory, but require changes to its insides.  

There is another way to use locks to get a different practical version of GlobalImpl, called 
ExternalLocks. The advantage of ExternalLocks is that the locking is decoupled from the 
internal actions of the memory system so that it can be coded separately, and hence 
ExternalLocks can run entirely in software on top of a memory system that only implements 
IncoherentMemory. In other words, ExternalLocks is a practical way to program coherent 
memory on a machine whose hardware provides only incoherent memory. 

There are many practical codes for the methods that are described abstractly here. Most of them 
originated in the hardware of shared-memory multiprocessors.1 It is also possible to code shared 
memory in software, relying on some combination of page faults from the virtual memory and 

                                                 
1 J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 2nd ed., Morgan Kaufmann, 
1996, chapter 8, pp 635-754. 
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checks supplied by the compiler. This is called ‘distributed shared memory’ or DSM.2 
Intermediate schemes do some of the work in hardware and some in software.3 Many of the 
techniques have been re-invented for coherent distributed file systems.4  

All our code makes use of a global memory that is modeled as a function from addresses to data 
values; in other words, the spec for the global memory is simply CoherentMemory. This means 
that actual code may have a recursive structure, in which the top-level code for CoherentMemory 
using one of our algorithms contains a global memory that is coded with another algorithm and 
contains another global memory, etc. This recursion terminates only when we lose interest in 
another level of virtualization. For example,  

a processor’s memory may consist of a first level cache plus  
a global memory made up of a second level cache plus  

a global memory made up of a main memory plus  
a global memory made up of a local swapping disk plus  

a global memory made up of a file server ....  

Specs 

First we recall the spec for ordinary coherent memory. Then we give the spec for efficient but 
ugly incoherent memory. Finally, we discuss an alternative, less intuitive way of writing these 
specs. 

Coherent memory 

The first spec is for the memory that we really want, which ensures that all memory operations 
appear atomic. It is essentially the same as the Memory spec from Handout 5 on memory specs, 
except that m is defined to be total. In the literature, this is sometimes called a ‘linearizable’ 
memory; in the more general setting of transactions it is ‘serializable’ (see handout 20). 

MODULE CoherentMemory [P, A, V] EXPORT Read, Write = 
% Arguments are Processors, Addresses and Data 

TYPE M = A -> D SUCHTHAT (\ f: A->D | (ALL a | f!a)) 
VAR m 

APROC Read(p, a) -> D = << RET m(a) >> 
APROC Write(p, a, d) = << m(a) := d >> 

END CoherentMemory 

                                                 
2 K. Li and P. Hudak, Memory coherence in shared virtual memory systems. ACM Transactions on Computer 
Systems 7, 4 (Nov. 1989), pp 321-359. For recent work in this active field see any ISCA, ASPLOS, OSDI, or SOSP 
proceedings. 
3 David Chaiken and Anant Agarwal. Software-extended coherent shared memory: performance and cost. 
Proceedings of the 21st Annual Symposium on Computer Architecture, pages 314-324, April 1994 
(http://www.cag.lcs.mit.edu/alewife/papers/soft-ext-isca94.html). Jeffrey Kuskin et al., The Stanford FLASH 
multiprocessor. In Proceedings of the 21st International Symposium on Computer Architecture, pages 302-313, 
Chicago, IL, April 1994 (http://www-flash.stanford.edu/architecture/papers/ISCA94). 
4 M. Nelson et al., Caching in the Sprite network file system. ACM Transactions on Computer Systems 11, 2 (Feb. 
1993), pp 228-239. For recent work in this active field see any OSDI or SOSP proceedings. 
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From this point we drop the a argument and study a memory with just one location; that is, we 
study a cached register. Since everything about the specs and code holds independently for each 
address, we don’t lose anything by doing this, and it reduces clutter. We also write the p 
argument as a subscript, again to make the specs easier to read. The previous spec becomes 

MODULE CoherentMemory [P, V] EXPORT Read, Write = 
% Arguments are Processors and Data 

TYPE M = D  % Memory 
VAR m 

APROC Readp -> D = << RET m >> 
APROC Writep(d) = << m := d >> 

END CoherentMemory 

Of course, code usually has limits on the size of a cache, or other resource limitations that can 
only be expressed by considering all the addresses at once, but we will not study this kind of 
detail here. 

Incoherent memory 

The next spec describes the minimum guarantees made by hardware: there is a private cache for 
each processor, and internal actions that move data back and forth between caches and the main 
memory, and between different caches. The only guarantee is that data written to a cache is not 
overwritten in that cache by anyone else’s data. However, there is no ordering on writes from the 
cache to main memory.  

This is not enough to get any useful work done, since it allows writes to remain invisible to 
others forever. We therefore add a Barrier synchronization operation that forces the cache and 
memory to agree. This can be used after a Write to ensure that an update has been written back 
to main memory, and before a Read to ensure that the data being read is current. Barrier was 
called Sync when we studied disks and file systems in handout 7, and eventual consistency in 
handouts 12 and 28. 

Note that Read has a guard Live that it makes no attempt to satisfy (hardware usually has an 
explicit flag called valid). Instead, there is another action MtoC that makes Live true. In a real 
system an attempt to do a Read will trigger a MtoC so that the Read can go ahead, but in Spec we 
can omit the direct linkage between the two actions and let the non-determinism do the work. We 
use this coding trick repeatedly in this handout. Another example is Barrier, which forces the 
cache to drop its data by waiting until Drop happens; if the cache is dirty, Drop will wait for CtoM 
to store its data into memory first. 

You might think that this is just specsmanship and that a nondeterministic MtoC is silly, but in 
fact transferring data from m to c without a Read is called prefetching, and many codes do it 
under various conditions: because it’s in the next block, or because a past reference sequence 
used it, or because the program executes a prefetch instruction. Saying that it can happen 
nondeterministically captures all of this behavior very simply. 

We adopt the convention that an invalid cache entry has the value nil. 
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MODULE IncoherentMemory [P, A, V] EXPORT Read, Write, Barrier =      
TYPE M = D % Memory 

C = P -> (D + Null) % Cache 

VAR m : CoherentMemory.M % main memory 
c := C{* -> nil} % local caches 
dirty : P -> Bool := {*->false} % dirty flags 

% INVARIANT Inv1: (ALL p | c!p) % each processor has a cache 
% INVARIANT Inv2: (ALL p | dirtyp ==> Livep) % dirty data is in the cache 

APROC Readp -> D = << Livep => RET cp >> % MtoC gets data into cache 
APROC Writep(d)  = << cp := d; dirtyp := true >> 

APROC Barrierp = << ~ Livep => SKIP >> % wait until not in cache 

FUNC Livep -> Bool = RET (cp # nil) 

% Internal actions 

THREAD Internalp = DO MtoCp [] CtoMp [] VAR p' | CtoCp,p' [] Dropp [] SKIP OD 

APROC MtoCp = << ~ dirtyp => cp := m >> % copy memory to cache 
APROC CtoMp = << dirtyp => m := cp; dirtyp := false >> % copy cache to memory 
APROC CtoCp,p' = << ~ dirtyp' /\ Livep => cp' := cp >> % copy from cache p to p' 
APROC Dropp = << ~ dirtyp => cp := nil >> % drop clean data from cache 

END IncoherentMemory 

In real code some of these actions may be combined. For example, if the cache is dirty, a real 
barrier operation may do CtoM; Barrier; MtoC by just storing the data. These combinations 
don’t introduce any new behavior, however, and it’s simplest to study the minimum set of 
actions presented here. 

This memory is ‘incoherent’: different caches can have different data for the same address, so 
that adjacent reads by different processors may see completely different data. Thus, it does not 
implement the CoherentMemory spec given earlier. However, after a Barrierp, cp is guaranteed 
to agree with m until the next time m changes or p does a Write.5 There are commercial machines 
whose memory systems have essentially this spec.6 Others have explored similar specs.7 

Here is a simple example that shows the contents of two addresses 0 and 1 in m and in three 
processors p, q, and r. A dirty value is marked with a *, and circles mark values that have 

                                                 
5 An alternative version of Barrier has the guard ~ livep \/ (cp = m); this is equivalent to the current 
Barrierp followed by an optional MtoCp. You might think that it’s better because it avoids a copy from m to cp in 
case they already agree. But this is a spec, not an implementation, and the change doesn’t affect its external 
behavior. 
6 Digital Equipment Corporation, Alpha Architecture Handbook, 1992. IBM, The PowerPC Architecture, Morgan 
Kaufmann, 1994. 
7 Gharachorloo, K., et al., Memory consistency and event ordering in scalable shared-memory multiprocessors, 
Proc. 17th Symposium on Computer Architecture, 1990, pp 15-26. Gibbons, P. and Merritt, M., Specifying 
nonblocking shared memories, Proc. 4th ACM Symposium on Parallel Algorithms and Architectures, 1992, pp 158-
168. 
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changed. Initially Readq(1) yields the dirty value z, Readr(1) yields y, and Readp(1) blocks 
because cp(1) is nil. After the CtoMq the global location m(1) has been updated with z. After 
the MtoCp, Readp(1) yields z. One way to ensure that the CtoMq and MtoCp actions happen before 
the Readp(1) is to do Barrierq followed by Barrierp between the Writeq(1) that makes z 
dirty in cq and the Readp(1). 

 

After MtoCp, Readp(1) yields z

CtoMq updates m(1) with z 

Readq(1) yields the dirty value z 
Readr(1) yields y 
Readp(1) blocks  
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Here are the possible transitions of IncoherentMemory for a given address. This kind of state 
transition picture is the standard way to describe cache algorithms in the literature; see pages 
664-5 of Hennessy and Patterson, for example. 

Write CtoMWrite

MtoC, CtoC

Drop
live /\ ~ dirty

live /\   dirty

~ live

 

 

This is the weakest shared-memory spec that seems likely to be useful in practice. But perhaps it 
is too weak. Why do we introduce this messy incoherent memory? Wouldn’t we be much better 
off with the simple and familiar coherent memory? There are two reasons to prefer 
IncoherentMemory: 
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• Code for IncoherentMemory can run faster—there is more locality and less communication. 
As we will see later in ExternalLocks, software can batch the communication that is needed 
to make a coherent memory out of IncoherentMemory. 

• Even CoherentMemory is tricky to use when there are concurrent clients. Experience has 
shown that it’s necessary to have wizards to package it so that ordinary programmers can use 
it safely. This packaging takes the form of rules for writing concurrent programs and 
procedures that encapsulate references to shared memory. We studied these rules in handout 
14 on practical concurrency, under the name ‘easy concurrency’. The two most common 
examples are: 

Mutual exclusion / critical sections / monitors together with a “lock before touching’ rule, 
which ensure that a number of references to shared memory can be done without 
interference from other processors, just as in a sequential program. Reader/writer locks 
are an important variation. 

Producer-consumer buffers. 

For the ordinary programmer only the simplicity of the package is important, not the subtlety of 
its code. We need a smarter wizard to package IncoherentMemory, but the result is as simple to 
use as the packaged CoherentMemory.  

Specifying legal histories directly 

It’s common in the literature to write the specs CoherentMemory and IncoherentMemory 
explicitly in terms of legal sequences of references in each processor, rather than as state 
machines (see the references in the previous section). We digress briefly to explain this approach 
informally; it is similar to what we did to specify concurrent transactions in handout 20. 

For CoherentMemoryLH, there must be a total ordering of all the Readp and Writep(v) actions 
done by the processors (for all the addresses) that 

• respects the order at each p, and 
• such that for each Read and closest preceding Write(v), the Read returns v. 

For IncoherentMemoryLH, for each address separately there must be a total ordering of the 
Readp, Writep, and Barrierp actions done by the processors that has the same properties. 
IncoherentMemory is weaker than CoherentMemory because it allows references to different 
addresses to be ordered differently. If there were only one address and no other communication 
(so that you couldn’t see the relative ordering of the operations), you couldn’t tell the difference 
between the two specs. A real barrier operation usually does a Barrier for every address, and 
thus forces all the references before it at a given processor to precede all the references after it. 

It’s not hard to show that CoherentMemoryLH is equivalent to CoherentMemory. It’s less obvious 
that IncoherentMemoryLH is almost equivalent to IncoherentMemory. There’s more to this spec 
than meets the eye, because it doesn’t say anything about how the chosen ordering is related to 
the real times at which different processors do their operations. Actually it is somewhat more 
permissive than IncoherentMemory. For example, it allows the following history 

• Initially x=1, y=1. 
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• Processor p reads 4 from x, then writes 8 to y. 
• Processor q reads 8 from y, then writes 4 to x. 

For x we have the ordering Writeq(4); Readp, and for y the ordering Writep(8); Readq. 

We can rule out this kind of predicting the future by observing that the processors make their 
references in some total order in real time, and requiring that a suitable ordering exist for the 
references in each prefix of this real time order. With this restriction, the two versions of 
IncoherentMemoryLH and IncoherentMemory are equivalent. But the restriction may not be an 
improvement, since it’s conceivable that a processor might be able to predict the future in this 
way by speculative execution. In any case, the memory spec for the Alpha is in fact 
IncoherentMemoryLH and allows this freedom. 

Coding coherent memory 

We give a sequence of refinements that implement CoherentMemory and are successively more 
practical: GlobalImpl, Current Caches, and ExclusiveLocks. Then we give a different kind 
of code that is based on IncoherentMemory. 

Global code 

Now we give code for CoherentMemory. We obtain it simply by strengthening the guards on the 
operations of IncoherentMemory (omitting Barrier, which we don’t need). This code is not 
practical, however, because the guards involve checking global state, not just the state of a single 
processor. This module, like later ones, maintains the invariant Inv3 that an address is dirty in at 
most one cache; this is necessary for the abstraction function to make sense. Note that the 
definition of Current says that the cache agrees with the abstract memory. 

We show only the code that differs from IncoherentMemory, boxing the new parts. 

MODULE GlobalImpl [P, A, V] EXPORT Read, Write = % implements CoherentMemory 

TYPE ...   % as in IncoherentMemory 
VAR ... 

% ABSTRACTION: CoherentMemory.m = (Clean() => m [*] {p | dirtyp | cp}.choose) 
 
% INVARIANT Inv3: {p | dirtyp}.size <= 1 % dirty in at most one cache 
 
APROC Readp -> D = << Currentp  => RET cp >> % read only current data 
APROC Writep(d) =  % Write maintains Inv3 

<< Clean() \/ dirtyp => cp := d; dirtyp := true >> 

FUNC Currentp = % p’s cache is current? 
RET cp = (Clean() => m [*] {p | dirtyp | cp}.choose) 

FUNC Clean() = RET (ALL p | ~ dirtyp) % all caches are clean? 

% Same internal actions as IncoherentMemory. 

END GlobalImpl 
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Notice that the guard on Read checks that the data in the processor’s cache is current, that is, 
equals the value currently stored in the abstract memory. This requires finding the most recent 
value, which is either in the main memory (if no processor has a dirty value) or in some 
processor's cache (if a processor has a dirty value). The guard on Write ensures that a given 
address is dirty in at most one cache. These guards make it obvious that GlobalImpl implements 
CoherentMemory, but both require checking global state, so they are impractical to code directly. 

Code in which caches are always current 

We can’t code the guards of GlobalImpl directly. In this section, we refine GlobalImpl a bit, 
replacing some (but not all) of the global tests. We carry this refinement further in the following 
sections. Our strategy for correctness is to always strengthen the guards in the actions, without 
changing the rest of the code. This makes it obvious that we simulate the previous module and 
that existing invariants hold. The only thing to check is that new invariants hold. 

The main idea of CurrentCaches is to always keep the data in the caches current, so that we no 
longer need the Current guard on Read. In order to achieve this, we impose a guard on a write 
that allows it to happen only if no other processor has a cached copy. This is usually coded by 
having a write invalidate other cached copies before writing; in our code Write waits for Drop 
actions at all the other caches that are live. Note that Only implies the guard of 
GlobalImpl.Write because of Inv2 and Inv3, and Live implies the guard of GlobalImpl.Read 
because of Inv4. This makes it obvious that CurrentCaches implements GlobalImpl. 
CurrentCaches uses the non-local functions Clean and Only, but it eliminates Current. This is 
progress, because Read, the most common action, now has a local guard, and because Clean and 
Only just test Live and dirty, which is much simpler than Current’s comparison of cp with m. 

As usual, the parts not shown are the same as in the last module, GlobalImpl.  

MODULE CurrentCaches ... = % implements GlobalImpl 

TYPE ...   % as in IncoherentMemory 
VAR ... 

% ABSTRACTION to GlobalImpl: Identity on m, c, and dirty. 
 
% INVARIANT Inv4: (ALL p | Livep ==> Currentp) % data in caches is current 

... 
 
FUNC Onlyp -> Bool = RET {p' | Livep'} <= {p} % appears at most in p’s cache 
 
APROC Readp -> D = << Livep => RET cp >> % read locally; OK by Inv4 
APROC Writep(d) =  % write locally the only copy  

<< Onlyp => cp := d; dirtyp := true >> 
 
... 
 
APROC MtoCp = << Clean() => cp := m >>  guard maintains Inv4  
... 

END CurrentCaches 
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Code using exclusive locks 

The next code refines CurrentCaches by introducing an exclusive (write) lock with a Free test 
and Acquire and Release actions. A writer must hold the lock on an object while it writes, but a 
reader need not hold any lock (Live acts as a read lock according to Inv4 and Inc6). Thus, 
multiple readers can read in parallel, but only one writer can write at a time, and only if there are 
no concurrent readers. This means that before a write can happen at p, all other processors must 
drop their copies; making this happen is called ‘invalidation’. The code ensures that while a 
processor holds a lock, no other cache has a copy of the locked object. It uses the non-local 
functions Clean and Free, but everything else is local. Again, the guards are stronger than those 
in CurrentCaches, so it’s obvious that ExclusiveLocks0 implements CurrentCaches. We 
show the changes from CurrentCaches.  

MODULE ExclusiveLocks0 ... = % implements CurrentCaches 

TYPE ...   % as in IncoherentMemory 
VAR ... 

lock : P -> Bool := {*->false} % p has lock on cache? 

% ABSTRACTION to CurrentCaches: Identity on m, c, and dirty. 

% INVARIANT Inv5: {p | lockp}.size <= 1 % lock is exclusive 
% INVARIANT Inv6: (ALL p | lockp ==> Onlyp) % locked data is only copy 

... 

APROC Writep(d) =  % write with exclusive lock 
<< lockp => cp := d; dirtyp := true >> 

... 
 
FUNC Free() -> Bool = RET (ALL p | ~ lockp) % no one has cache locked? 

THREAD Internalp =  
DO    MtoCp [] CtoMp [] VAR p' | CtoCp,p' [] Dropp  
   [] Acquirep [] Releasep [] SKIP OD 

APROC MtoCp = % guard maintains Inv4, Inv6 
<< Clean() /\ (lockp \/ Free()) => cp := m >> 

APROC CtoCp,p' =  % guard maintains Inv6 
<< Free() /\ ~ dirtyp' /\ Livep => cp' := cp >> 

APROC Acquirep = << Free() /\ Onlyp => lockp :=true >> % exclusive lock is on cache 
APROC Releasep = << lockp := false >> % release at any time 

... 

END ExclusiveLocks0 

Note that this all works even in the presence of cache-to-cache copying of dirty data; a cache can 
be dirty without being locked. A strategy that allows such copying is called update-based. The 
usual code broadcasts (on the bus) every write to a shared location. That is, it combines with 
each Writep a CtoCp, p' for each live p'. If this is done atomically, we don’t need the Onlyp in 
Acquirep This is good if for each write of a shared location, the average number of reads on a 
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different processor is near 1. It’s bad if this average is much less than 1, since then each read that 
goes faster is paid for with many bus cycles wasted on updates.  

It’s possible to combine updates and invalidation. They you have to decide when to update and 
when to invalidate. It’s possible to make this choice in a way that’s within a factor of two of an 
optimal algorithm that knows the future pattern of references.8 The rule is to keep updating until 
the accumulated cost of updates equals the cost of a read miss, and then invalidate. 

Both Read and Write now do only local tests, which is good since they are supposed to be the 
most common actions. The remaining global tests are the Only test in Acquire, the Clean test in 
MtoC, and the Free tests in Acquire, MtoC, and CtoC. In hardware these are most commonly 
coded by snooping on a bus. A processor can broadcast on the bus to check that: 

• No one else has a copy (Only). 

• No one has a dirty copy (Clean).  

• No one has a lock (Free). 

It’s called ‘snooping’ because these operations always go along with transfers between cache and 
memory (except for Acquire), so no extra bus cycles are need to give every processor on the bus 
a chance to see them. 

For this to work, another processor that sees the test must either abandon its copy or lock, or 
signal false. The false signals are usually generated at exactly the same time by all the 
processors and combined by a simple ‘or’ operation. The processor can also request that the 
others relinquish their locks or copies; this is called ‘invalidating’. Relinquishing a dirty copy 
means first writing it back to memory, whereas relinquishing a non-dirty copy means just 
dropping it from the cache. Sometimes the same broadcast is used to invalidate the old copies 
and update the caches with new copies, although our code breaks this down into separate Drop, 
Write, and CtoC actions. 

Keeping dirty data locked 

In the next module, we eliminate the cache-to-cache copying of dirty data; that is, we eliminate 
updates on writes of shared locations. We modify ExclusiveLocks so that locks are held longer, 
until data is no longer dirty. Besides the delayed lock release, the only significant change is in 
the guard of MtoC. Now data can only be loaded into a cache p if it is not dirty in p and is not 
locked elsewhere; together, these facts imply that the data item is clean, so we no longer need the 
global Clean test. 

                                                 
8 A. Karlin et al, Competitive snoopy caching. Algorithmica 3, 1 (1988), pp 79-119. 
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MODULE ExclusiveLocks ... = % implements ExclusiveLocks0 

TYPE ...   % as in ExclusiveLocks0 
VAR ... 

% ABSTRACTION to ExclusiveLocks0: Identity on m, c, dirty, and lock. 
 
% INVARIANT Inv7: (ALL p | dirtyp ==> lockp) % dirty data is locked 

... 

APROC MtoCp =  % guard implies Clean()  
<< ~ dirtyp /\ (lockp \/ Free()) => cp := m >> 

APROC Releasep = << ~ dirtyp => lockp := false >> % don't release if dirty 
... 

END ExclusiveLocks 

For completeness, we give all the code for ExclusiveLocks, since there have been so many 
incremental changes. The non-local operations are boxed. 

MODULE ExclusiveLocks[P,A,V] EXPORT Read,Write = % implements CoherentMemory 

TYPE M = D   % Memory 
C = P -> (D + Null) % Cache 

VAR m : CoherentMemory.M % main memory 
c := C{* -> nil} % local caches 
dirty : P -> Bool := {*->false} % dirty flags 
lock : P -> Bool := {*->false} % p has lock on cache? 

% ABSTRACTION to ExclusiveLocks: Identity on m, c, dirty, and lock. 

% INVARIANT Inv1: (ALL p | c!p) % every processor has a cache 
% INVARIANT Inv2: (ALL p | dirtyp ==> Livep) % dirty data is in the cache 

% INVARIANT Inv3: {p | dirtyp}.size <= 1 % dirty in at most one cache 
% INVARIANT Inv4: (ALL p | Livep ==> Currentp) % data in caches is current 
% INVARIANT Inv5: {p | lockp}.size <= 1 % lock is exclusive 
% INVARIANT Inv6: (ALL p | lockp ==> Onlyp) % locked data is only copy 
% INVARIANT Inv7: (ALL p | dirtyp ==> lockp) % dirty data is locked 

APROC Readp -> D = << Livep => RET cp >> % read locally; OK by Inv4 
APROC Writep(d) =  % write with exclusive lock 

<< lockp => cp := d; dirtyp := true >> 

FUNC Livep -> Bool = RET (cp # nil) 
FUNC Onlyp -> Bool = RET {p' | Livep'} <= {p} % appears at most in p's cache? 
FUNC Free() -> Bool = RET (ALL p | ~ lockp) % no one has cache locked? 

THREAD Internalp =  
DO    MtoCp [] CtoMp [] VAR p' | CtoCp,p' [] Dropp  
   [] Acquirep [] Releasep [] SKIP OD 

APROC MtoCp =  % guard implies Clean()  
<< ~ dirtyp /\ (lockp \/ Free()) => cp := m >> 
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APROC CtoMp = << dirtyp => m := cp; dirtyp := false >> % copy cache to memory. 
APROC CtoCp,p' =  % guard maintains Inv6 

<< Free() /\ ~ dirtyp' /\ Livep => cp' := cp >> 
APROC Dropp = << ~ dirtyp => cp := nil >> % drop clean data from cache 

APROC Acquirep = << Free() /\ Onlyp => lockp :=true >> % exclusive lock is on cache 
APROC Releasep = << ~ dirtyp => lockp := false >> % don't release if dirty 

END ExclusiveLocks 

Practical code 

The remaining global tests are the Only test in the guard of Acquire, and the Free tests in the 
guards of Acquire, MtoC and CtoC. There are many ways to code them. Here are a few: 

• Snooping on the bus, as described above. This is only practical when you have a cheap 
synchronous broadcast, that is, in a bus-based shared memory multiprocessor. The shared bus 
limits the maximum performance, so typically such systems are not built with more than 
about 8 processors. As processors get faster, a shared bus gets less practical. 

• Directory-based: Keep a “directory”, usually associated with main memory, containing 
information about where locks and copies are currently located. To check Free, a processor 
need only interact with the directory. To check Only, the same strategy can be used; 
however, there is a difficulty if cache-to-cache copying is permitted—the directory must be 
informed when such copying occurs. For this reason, directory-based code usually eliminates 
cache-to-cache copying entirely. So far, there’s no need for broadcast. To acquire a lock, the 
directory may need to communicate with other caches to get them to relinquish locks and 
copies. This can be done by broadcast, but usually the directory keeps track of all the live 
processors and sends a message to each one. If there are lots of processors, it may fall back to 
broadcast for locations that are shared by too many processors. 

These schemes, both snooping and directory, are based on a model in which all the 
processors have uniform access to the shared memory. 

 

Shared Main Memory 

Cache Cache Cache

Processor Processor Processor

Interconnect

 

The directory technique extends to large-scale multiprocessor systems like Flash and 
Alewife, distributed shared memory, and locks in clusters9, in which the memory is attached 

                                                 
9 Kronenberg, N. et al, The VAXCluster concept: An overview of a distributed system, Digital Technical Journal 1, 
3 (1987), pp 7-21. 
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to processors. When the abstraction is memory rather than files, these systems are often 
called ‘non-uniform memory access’, or NUMA, systems. 

 

Processor ProcessorProcessor 

Memory Memory Memory 

Cache Cache Cache 

Interconnect 
 

The directory itself can be distributed by defining a ‘home’ location for each address that 
stores the directory information for that address. This is inefficient if that address turns out to 
be referenced mainly by other processors. To make the directory’s distribution adapt better to 
usage, store the directory information for an address in a ‘master’ processor for that address, 
rather than in the home processor. The master can change to track the usage, but the home 
processor always remembers the master. Thus: 

FUNC Home(a) -> P = … % some fixed algorithm 
VAR  master: P -> A -> P % master(p) is partial 
     copies: P -> A -> SET P % defined only at the master 
     locker: P -> A -> P % defined only at the master 
INVARIANT (ALL a, p, p' |  
            master(Home(a))!a % master is defined at a’s home P, 
         /\ master(p)!a /\ master(p')!a ==>  % where it’s defined, it’s the same 
              master(p)(a) = master(p')(a) 
         /\ copies!p = (p = master(Home(a))(a)) ) % and copies is defined only at master 

The Home function is often a hash of a; it’s possible to change the hash function, but if this is 
not atomic it must be done very carefully, because Home will be different at different 
processors and the invariants must hold for all the different Home’s. 

 

Processor 
1 

Processor 
P 

Processor 
2 

Memory Memory Memory 
Cache Cache Cache 

Interconnect 

Directory Directory Directory 

 

• Hierarchical: Partition the processors into sets, and maintain a directory for each set. The 
main directory attached to main memory keeps track of which processor sets have copies or 
locks; the directory for each set keeps track of which processors in the set have copies or 
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locks. The hierarchy may have more levels, with the processor sets further subdivided, as in 
Flash. 

There are many issues for high-performance code: communication cost, bandwidth into the 
cache into tag store, interleaving, and deadlock. The references at the start of this handout go into 
a lot of detail. 

Purely software code is also possible. This form of DSM makes V be a whole virtual memory 
page and uses page faults to catch memory operations that require software intervention, while 
allowing those that can be satisfied locally to run at full speed. A live page is mapped, read-only 
unless it is dirty; a page that isn’t live isn’t mapped.10 

Code based on IncoherentMemory 
Next we consider a different kind of code for CoherentMemory that runs on top of 
IncoherentMemory. This code guarantees coherence by using an external read/write locking 
discipline. This is an example of an important general strategy—using weaker memory together 
with a programming discipline to guarantee strong coherence. 

The code uses read/write locks, as defined earlier in the course, one per data item. There is a 
module ExternalLocksp for each processor p, which receives external Read and Write requests, 
obtains the needed locks, and invokes low-level Read, Write, and Barrier operations on the 
underlying IncoherentMemory memory. The composition of these pieces implements 
CoherentMemory. We give the code for ExternalLocksp. 

MODULE ExternalLocksp [A, V] EXPORT Read, Write = % implements CoherentMemory 

% ReadAcquirep acquires a read lock for processor p. 
% Similarly for ReadRelease, WriteAcquire, WriteRelease 

PROC Readp =  
ReadAcquirep; Barrierp; VAR d| d := IncoherentMemory.Readp; ReadReleasep; RET d 

PROC Writep(d) = WriteAcquirep; IncoherentMemory.Writep(d); Barrierp; WriteReleasep 

END ExternalLocksp 

This code does not satisfy all the invariants of CurrentCaches and its code. In particular, the 
data in caches is not always current, as stated in Inv4. It is only guaranteed to be current if it is 
read-locked, or if it is write-locked and dirty. 

Invariants Inv1, Inv2, and Inv3 are still satisfied. Invariants Inv5 and Inv6 no longer apply 
because the lock discipline is completely different; in particular, a locked copy need not be the 
only copy of an item. Let wLockPs be the set of processors that have a write-lock, and rLockPs 
be those with a read-lock.  

We thus have Inv1-3, and new Inv4a-Inv7a that replace Inv4-Inv7:   

                                                 
10 K. Li and P. Hudak, Memory coherence in shared virtual memory systems, ACM Transactions on Computer 
Systems 7, 4 (Nov 1989), pp 321-359. 
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% INVARIANT Inv4a:  % Data is current 
(ALL p | dirtyp \/ (p IN rLockPs /\ Livep) ==> Currentp()) 

% INVARIANT Inv5a: % Write lock is exclusive. 
 wLockPs.size <= 1 

% INVARIANT Inv6a: % Write lock excludes read locks. 
 wLockPs # {} ==> rLockPs = {} 

% INVARIANT Inv7a: (ALL p | dirtyp ==> p IN wLockPs) % dirty data is write-locked 

With these invariants, the identity abstraction to GlobalImpl works: 

% ABSTRACTION to GlobalImpl: Identity on m, c, and dirty. 

We note some differences between ExternalLocks and ExclusiveLocks, which also uses 
exclusive locks for writing: 

• In ExclusiveLocks, Read can always proceed if there is a cache copy. In ExternalLocks, 
Read has a stronger guard in ReadAcquire (requiring a read lock). 

• In ExclusiveLocks, MtoC checks that no other processor has a lock on the item. In 
ExternalLocks, an MtoC can occur as long as it doesn’t overwrite dirty writes. 

• In ExternalLocks, the guard for Acquire only involves lock conflicts, and does not check 
Only. (In fact, ExternalLocks doesn't use Only at all.) 

• Additional Barrier actions are required in ExternalLocks. 

• In ExclusiveLocks, the data in the cache is always current. In ExternalLocks, it is only 
guaranteed to be current for read-lock holders, and for write-lock holders who have already 
written. 

In practice we don’t surround every read and write with Acquire and Release. Instead, we take 
advantage of the rules for easy concurrency and rely on the fact that any reference to a shared 
variable must be in a critical section, surrounded by Acquire and Release of the lock that 
protects it. All we need to add is a Barrier at the beginning of the critical section, after the 
Acquire, and another at the end, before the Release. Sometimes people build these barrier 
actions into the acquire and release actions; this is called ‘release consistency’. 

Note—here we give up the efficiency of continuing to hold the lock until someone else needs it. 

Remarks 

Costs of incoherent memory 

IncoherentMemory allows a multiprocessor shared memory to respond to Read and Write 
actions without any interprocessor communication. Furthermore, these actions only require 
communication between a processor and the global memory when a processor reads from an 
address that isn’t in its cache. The expensive operation in this spec is Barrier, since the 
sequence Writep; Barrierp; Barrierq; Readq requires the value written by p to be 
communicated to q. In most code Barrier is even more expensive because it acts on all 
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addresses at once. This means that roughly speaking there must be at least enough 
communication to record globally every address that p wrote before the Barrierp, and to drop 
from p’s cache every address that is globally recorded as dirty. 

Read-modify-write operations 

Although this isn’t strictly necessary, all current codes have additional external actions that make 
it easier to program mutual exclusion. These usually take the form of some kind of atomic read-
modify-write operation, for example an atomic swap or compare-and-swap of a register value 
and a memory value. A currently popular scheme is two actions: ReadLinked(a) and 
WriteConditional(a), with the property that if any other processor writes to a between a 
ReadLinkedp(a) and the next WriteConditionalp(a), the WriteConditional leaves the 
memory unchanged and returns an indication of failure. The effect is that if the 
WriteConditional succeeds, the entire sequence is an atomic read-modify-write from the 
viewpoint of another processor, and if it fails the sequence is a SKIP. Compare-and-swap is 
obviously a special case; it’s useful to know this because something as strong as compare-and-
swap is needed to program wait-free synchronization using a shared memory. Of course these 
operations also incur communication costs, at least if the address a is shared.  

We have shown that a program that touches shared memory only inside a critical section cannot 
distinguish memory that satisfies IncoherentMemory from memory that satisfies the serial spec 
CoherentMemory. This is not the only way to use IncoherentMemory, however. It is possible to 
program other standard idioms, such as producer-consumer buffers, without relying on mutual 
exclusion. We leave these programs as an exercise for the reader.  

Caching as easy concurrency 

We developed the coherent caching code by evolving from the obviously correct GlobalImpl to 
code that has no global operations except to acquire locks. Another way to look at it is that 
coherent caching is just a variation on easy concurrency. Each Read or Write touches a shared 
variable and therefore must be done with a lock held, but there are no bigger atomic operations. 
The read lock is Live and the write lock is lock. In order to avoid the overhead of acquiring and 
releasing a lock on every memory operation, we use the optimization of holding onto a lock until 
some other cache needs it. 

Write buffering 

Hardware caches, especially the ‘level 1’ caches closest to the processor, usually come in two 
parts, called the cache and the write buffer. The latter holds dirty data temporarily before it’s 
written back to the memory (or the level 2 cache in most modern systems). It is small and 
optimized for high write bandwidth, and for combining writes to the same cache block that 
happen close together in time into a single write of the entire block. 

Invalidation 

All caching systems have some provision for invalidating cache entries. A system that 
implements CoherentMemory usually must invalidate a cache entry that is written on another 
processor. The invalidation must happen before any read that follows the write touches the entry. 
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Many systems, however, provide less coherence. For example, NFS simply times out cache 
entries; this implements IncoherentMemory, with the clumsy property that the only way to code 
Barrier is to wait for the timeout interval. The web does caching in client browsers and also in 
proxies, and it also does invalidation by timeout. A web page can set the timeout interval, though 
not all caches respect this setting. The Internet caches the result of DNS lookups (that is, the IP 
address of a DNS name) and of ARP lookups (that is, the LAN address of an IP address). These 
entries are timed out; a client can also discard an entry that doesn’t seem to be working. The 
Internet also caches routing information, which is explicitly updated by periodic OSPF packets. 

Think about what it would cost to make all these loosely coherent schemes coherent, and 
whether it would be worth it. 

Locality and granularity  

Caching works because the patterns of memory references exhibit locality. There are two kinds 
of locality. 

• Temporal locality: if you reference an address, you are likely to reference it again in the near 
future, so it’s worth keeping that item in the cache. 

• Spatial locality: if you reference an address, you are likely to reference a neighboring address 
in the near future. This makes it worthwhile to transfer a large block of data to the cache, 
since the overhead of a miss is only paid once. Large blocks do have two drawbacks: they 
consume more bandwidth, and they introduce or increase ‘false sharing’. A whole block has 
to be invalidated whenever any part of it is written, and if you are only reading a different 
part, the invalidation makes for extra work. 

Both temporal and spatial locality can be improved by restructuring the program, and often this 
restructuring can be done automatically. For instance, it’s possible to rearrange the basic blocks 
of a program based on traces of program execution so that blocks that normally follow each other 
in traces are in the same cache line or virtual memory page. 

Distributed file systems 

 A distributed file system does caching which is logically identical to the caching that a memory 
system does. There are some practical differences: 

• A DFS is usually built without any hardware support, whereas most DSM’s depend at least 
on the virtual memory system to detect misses while letting hits run at full local memory 
speed, and perhaps on much more hardware support, as in Flash. 

• A DFS must deal with failures, whereas a DSM usually crashes a program that is sharing 
memory with another program that fails. 

• A DFS usually must scale better, to hundreds or thousands of nodes. 

• A DFS has a wider choice of granularity: whole files, or a wide range of block sizes within 
files. 
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