
6.849: Geometric Folding Algorithms

Fall 2012 — Prof. Erik Demaine,

Problem Set 3 Solutions

Due: Tuesday, October 2nd, 2012

We will drop (ignore) your lowest score on any one problem.

Problem 1. Design and fold a piece of origami using Tomohiro Tachi’s Freeform Origami software
or Alex Bateman’s Tess. Submit the physical folded piece in class with your name on it, and send
a digital copy of the crease pattern.

• Freeform Origami can be downloaded from http://www.tsg.ne.jp/TT/software/#ffo

(Windows only. If you do not have a Windows machine, use a Windows Athena cluster, e.g.,
in building 37-3.)

• Tess can be downloaded from http://www.papermosaics.co.uk/software.html

(Requires Perl/Tk, or use the Windows binary.)

Solution: There is no one correct answer.
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Problem 2. Given a flat-foldable degree-4 vertex, we
can represent its configuration in 3D space by the four an-
gles between the creases (θ1, θ2, θ3, θ4) and by four fold-
ing angles (ρ1,2, ρ2,3, ρ3,4, ρ4,1), as shown on the right. We
measure a folding angle between −180◦ and 180◦: a fold-
ing angle of 0 indicates no folding, while a folding angle of
±180◦ indicates a mountain/valley flat fold. Prove that,
for any 3D configuration of a flat-foldable degree-4 vertex,
|ρ1,2| = |ρ3,4| and |ρ2,3| = |ρ4,1|. (For the mountain-valley
assignment in the figure, ρ1,2 = ρ3,4 and ρ2,3 = −ρ4,1.)

Hint: Use spherical trigonometry.

Solution: Choose points along the creases all at distance 1 from the vertex of the fold. These
points form a spherical quadrilateral on the surface of a sphere of radius 1, whose edge lengths are
θ1, θ2, θ3, θ4, and whose vertex angles are ρ1, ρ2, ρ3, ρ4. Call the interior diagonal of this quadrilateral
x. Then, by the Spherical Law of Cosines, we have:

cosx = cos θ2 cos θ3 + sin θ2 sin θ3 cos ρ2,3, (1)

cosx = cos θ1 cos θ4 + sin θ1 sin θ4 cos ρ4,1. (2)

Further, by Kawasaki’s Theorem, we know:

θ1 + θ3 = θ2 + θ4 = π. (3)
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From trigonometry, we know:
cos(π − θ) = − cos θ, (4)

sin(π − θ) = sin θ. (5)

Combining Equations 1 through 6, we get:

cosx = cos θ2 cos θ3 + sin θ2 sin θ3 cos ρ2,3 = cos θ1 cos θ4 + sin θ1 sin θ4 cos ρ4,1 (6)

cos θ2 cos θ3 + sin θ2 sin θ3 cos ρ2,3 = cos(π − θ3) cos(π − θ2) + sin(π − θ3) sin(π − θ2) cos ρ4,1 (7)

cos θ2 cos θ3 + sin θ2 sin θ3 cos ρ2,3 = (−1)(−1) cos θ2 cos θ3 + sin θ2 sin θ3 cos ρ4,1 (8)

cos θ2 cos θ3 + sin θ2 sin θ3 cos ρ2,3 = cos θ2 cos θ3 + sin θ2 sin θ3 cos ρ4,1 (9)

cos ρ2,3 = cos ρ4,1 (10)

Because we know the values of our fold angles are restricted to the range [−π, π], we know ρ2,3 =
±ρ1,4. A similar argument using different angles and spherical triangles gives the other pair of
angles.

Problem 3. Make a cool maze-folding design using the following webapp:

http://erikdemaine.org/fonts/maze/

Email us a link to your design using the “link to this view” feature. You do not need to fold this
piece. If you decide to try folding it, we will expect a much less complex design.

Solution: There is no one correct answer.

Problem 4. Prove that the following problem is NP-hard:

Given a 1D piece of paper with a 1D crease pattern, find the subset of creases to fold
that produces the smallest length of the resulting flat folding.

Note that not all creases need to be folded and there is no mountain-valley assignment.
Hint: Reduce from Partition.

Solution: We prove NP-hardness of the above problem by reduction from Partition. The
Partition problem asks, given a multi-set S = {a0, a1, . . . , an}, whether there exists a partition into
two subsets S1 and S2 such that the sum of the elements of S1 equals the sum of the elements of S2.
We construct an instance of the folding problem with creases placed with the following distances
between them: {L,L/2, a0, a1, . . . , an, L/2, L}, where T =

∑n
i=0 ai and L > 2T .
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Because of the edges of length L, it is impossible to fold the paper smaller than length L. To
achieve this minimum length, both bars of length L must lie on top of each other, and thus the
bars of length L/2 must have endpoints at 0, L/2 or L/2, L. This property can occur only if the
sections in the middle come back to the same location they start at, i.e., position L/2. Now, when
we decide not to fold a crease, we have lengths continuing in the same direction, while when we
fold the crease, they then move in the opposite direction. Thus, to have the start and end of this
subsection of the paper return to the same place, we must be able to pick lengths traveling to the
right and lengths traveling to the left such that the sum of the lengths in each group is the same.
(You may have noticed a similarity to Kawasaki’s Theorem, because in that case the paper needed
to meet itself to be circular.)

Thus, we can instantiate the Partition problem in the folding problem. If the minimum length
is L, then we know that there is a partition of the sets. In addition, if we know the partition, we
can construct a folding of length L by folding a crease whenever the next corresponding segment is
partitioned into a different set than the previous one, and not folding a crease when they are both
in the same set. Therefore the folding problem is NP-Hard.
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