

Crease the diagonals

Fold the top edge to the center point, creasing only between the diagonals

Unfold

Repeat on the bottom (fold and unfold)

Turn over, and crease in between the squares in the opposite direction

Final crease pattern
-- - Valley fold
----- Mountain fold

Folding the crease pattern completely forms an "X" shape

Partially opening it forms a hypar

Demaine, Demaine, Lubiw

Courtesy of Jenna Fizel. Used with permission.
[Albers at Bauhaus, 1927-1928] ${ }_{2}$

Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission.
Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006

Virtual Origami
Demaine, Demaine, Fizel, Ochsendorf 2006

Courtesy of Erik Demaine, Martin Demaine, and Jenna Fizel. Used with permission.
[Demaine, Demaine, Lubiw 1999]

 Fizel, and John Ochsendorf. Used with permission.

Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006

Courtesy of Erik Demaine and Martin Demaine. Used with permission.

Peel Gallery, Houston

Demaine \& Demaine 2009

Courtesy of Erik Demaine and Martin Demaine. Used with permission.
See also http://erikdemaine.org/curved/Limit/.

Courtesy of Erik Demaine and Martin Demaine. Used with permission.

Waves in Glass

Erik Demaine Martin Demaine

communication between glass \& paper

Courtesy of Jenna Fizel. Used with permission.
[Demaine, Demaine, Hart, Price, Tachi 2009/2010]

Courtesy of Erik D. Demaine, Martin L. Demaine, Vi Hart, Gregory N. Price, and Tomohiro Tachi. Used with permission.
[Demaine, Demaine, Hart, Price, Tachi 2009/2010]

[Demaine, Demaine, Hart, Price, Tachi 2009/2010]

[Demaine, Demaine, Hart, Price,

Tachi 2009/2010]
Courtesy of Erik D. Demaine, Martin L. Demaine, Vi Hart, Gregory N. Price, and Tomohiro Tachi. Used with permission.

digits of precision	16	32	64	128	256	512	1024	2048
n for $\theta=1^{\circ}$ alt.	3	6	12	24	43	79	≥ 100	
n for $\theta=45^{\circ}$ alt.	3	5	10	18	32	58	≥ 100	
n for $\theta=76^{\circ}$ alt.	2	5	9	16	29	53	95	$\geq 100_{16}$

Courtesy of Erik D. Demaine, Martin L. Demaine, Vi Hart, Gregory N. Price, and Tomohiro Tachi. Used with permission.
[Demaine, Demaine, Hart, Price, Tachi 2009/2010]

Courtesy of Erik D. Demaine, Martin L. Demaine, Vi Hart, Gregory
N. Price, and Tomohiro Tachi. Used with permission.

$\theta=$	2°	4°	6°	8°	10°	12°
$n \leq$	133	67	45	33	27	23
$\theta=$	18°	20°	22°	24°	26°	\ldots
	34°					
$n \leq$	15	13	13	11		9

[Demaine, Demaine, Hart, Price, Tachi

θ	$=$	36°	\ldots.	46°	48°	\ldots	72°	74°	\ldots	178°
$n \leq$	7	\ldots	7	5	\ldots	5	3	\ldots	3	

Image removed due to copyright restrictions.
Refer to: http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg

Image removed due to copyright restrictions. Refer to: http://en.wikipedia.org/wiki/File:Ruled_hyperboloid.jpg and http://en.wikipedia.org/wiki/File:Helixtgtdev.png.

[Demaine, Demaine, Hart, Price, Tachi 2009/2010]

[Demaine, Demaine, Hart, Price, Tachi 2009/2010]

Photo courtesy of themacinator on Flickr. Used with permission. Under CC-BY.

Huffman Family (May 2010)

Tessellations

circles

Courtesy of Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Used with permission.
design by David Huffman; recreated folding by Demaine, Demaine, Koschitz 2010

Tessellations

"Arches"

parabolas \& lines

Courtesy of Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Used with permission.
design by David Huffman; recreated folding by Demaine, Demaine, Koschitz 2010

Courtesy of Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Used with permission.

"Hexagonal column with cusps"

(†wo variations)

circles \& lines

Courtesy of Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Used with permission.

"Hexagonal column with cusps"

circles
$\&$ lines

Courtesy of Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Used with permission.
design by David Huffman; recreated folding by Demaine, Demaine, Koschitz 2010

"4-lobed cloverleaf"

ellipses
\& lines

Courtesy of Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Used with permission.

Courtesy of Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Used with permission.

"One column"

parabolas
 \& lines

Courtesy of Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Used with permission.

"One column"

parabolas
\& lines

Courtesy of Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Used with permission.
design by David Huffman; recreated folding by Demaine, Demaine, Koschitz 2010

Huffman Family (May 2010)

MIT OpenCourseWare
http://ocw.mit.edu

6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

