Crease pattern of Mooser's Train removed due to copyright restrictions.
Refer to: Fig. 12.4 from Lang, Robert J. Origami Design Secrets: Mathematical Methods for an Ancient Art. 2nd ed. A K Peters / CRC Press, 2011.

Crease pattern of Mooser's Train removed due to copyright restrictions.
Refer to: Fig. 12.4 from Lang, Robert J. Origami Design Secrets: Mathematical Methods for an Ancient Art. 2nd ed. A K Peters / CRC Press, 2011.

Are there known universal hinge patterns to build poly-some-other-shapes-that-are-not-cubes?

Courtesy of Erik Demaine, Martin Demaine, and Sarah Stengle. Used with permission.

Yes/No
Demaine, Demaine, Stengle 2011

Courtesy of Erik Demaine, and Martin Demaine. Used with permission.

Martin Gardner

Demaine, Demaine 2012

Courtesy of Erik Demaine, and Martin Demaine. Used with permission.
GLASS
Demaine \& Demaine, 2012_{8}

I didn't understand the point of NP-hardness. Are there examples of actual problems that can't be calculated?

Could we go through one of the NP proofs with a little less
 hand waving?

[Arkin, Bender, Demaine, Demaine, Mitchell, Sethia, Skiena $2000]_{12}$

Minor question: in the orthogonal paper reduction, doesn't this require not folding some of the creases, if we want to make 2 consecutive strips the same direction?

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

[Bern \&
Hayes
1996]

$[$ Bern \&
Hayes
$1996]_{15}$

In the reflector gadget, it looks like all the left sides of the wires, where left is taken relative to the free end of the wire, are equal. How does the reflector negate one of them, then?

[Bern \& Hayes 1996]

It looks like the global flat foldability proof proves that globally flat-foldable
\Rightarrow NAE satisfiability
\Rightarrow locally flat-foldable,
but I don't see where NAE satisfiability \Rightarrow globally flat-foldable. (It looks like all that matters is the order of sheets, though, and that those all work out.)

$[$ Bern \&
Hayes
$1996]_{18}$

For global flat foldability, I understand how the gadgets prove (1), but how do they prove (2)?

Global flat foldability:
[Bern \& Hayes 1996]
(1) deciding flat foldability of given crease pattern is strongly NP-hard
(2) constructing valid layer ordering for given flat-fildable mountain-vally pattern is strongly NP-hard

[Bern \& Hayes 1996]

NAE clause

2D map folding: [Arkin et al 2004]
\leftrightarrows rectangular paper with axis-parallel creases

- again every crease pattern is flat foldable:
zig-zag in x then y

$$
\rightarrow \text { 位 }
$$

OPEN: characterize flat-foldable mountain-valley patterns - even $2 \times n$! [Edmonds 1997]

Simple folds are not as powerful in 2D: (in contrast to 1D, where we can simulate crimplend folds)

[Demaine, Liu, Morgan 2012]

[Demaine, Liu, Morgan 2012]

Courtesy of Erik Demaine, Eric Liu, and Thomas Morgan. Used with permission.

Courtesy of Erik Demaine, Eric Liu, and Thomas Morgan. Used with permission.
[Demaine, Liu, Morgan 2012]

ray diagram

West
up

South

Courtesy of Erik Demaine, Eric Liu, and Thomas Morgan. Used with permission.
[Demaine, Liu, Morgan 2012]

Courtesy of Erik Demaine, Eric Liu, and Thomas Morgan. Used with permission.
[Demaine, Liu, Morgan 2012]

SSESNSNSWSNWNSN

Courtesy of Erik Demaine, Eric Liu, and Thomas Morgan. Used with permission.

[Demaine, Liu, Morgan 2012]

Courtesy of Erik Demaine, Eric Liu, and Thomas Morgan. Used with permission.
[Demaine, Liu, Morgan 2012]

MIT OpenCourseWare
http://ocw.mit.edu

6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

