As a student in the video pointed out, the dot product equaling zero means that the vectors $C(v)-C(w)$ and $d(v)-d(w)$ are perpendicular. However, you said you had trouble visualizing $d(v)-d(w)$.

## How can you say the

 tensegrity you showed is rigid when you can perturb it like that? What part of the model was breaking down in real life?
## Why use springs to build bars?

## I liked the part about tensegrities as actual sculptures.

Photographs of outdoor sculptures removed due to copyright restrictions.
Refer to: http://kennethsnelson.net/category/sculptures/outdoor-works/.

Photographs of outdoor sculptures removed due to copyright restrictions.
Refer to: http://kennethsnelson.net/category/sculptures/outdoor-works/.

http://www.flickr.com/photos/tactom/7564732824/


Freeform Tensegrity Tomohiro Tachi http://youtu.be/6ZUhPKU0ePk

# $\ddot{T}$ <br> Math MONDAY 



Soda Straw Tensegrity Structures
George Hart
Tensegrity Balls


MIT OpenCourseWare
http://ocw.mit.edu

### 6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

