With the energy method, we relax our expansive condition. That doesn't seem like such a concession - why were we so concerned with expansivity in the first place? Was it just a convenient condition to ensure no selfintersection?

For the energy decreasing

 algorithm, how do we know that when following the gradient we aren't finding just a local minimum that isn't fully unfolded?(presumably this is what would happen if we tried to apply the algorithm to some locked 2D trees)

Really interested in pointed pseudotriangulations [...]

Ray Shooting in Polygons Using Geodesic Triangulations ${ }^{1}$

B. Chazelle, ${ }^{2}$ H. Edelsbrunner, ${ }^{3}$ M. Grigni, ${ }^{4}$ L. Guibas, ${ }^{5,6.7}$
J. Hershberger, ${ }^{5}$ M. Sharir, ${ }^{8,9}$ and J. Snoeyink ${ }^{7}$

Image of the first two levels of a balanced geodesic triangulation removed due to copyright restrictions. Refer to: Fig. 3 from Chazelle, B., H. Edelsbrunner, et al. "Ray Shooting in Polygons Using Geodesic Triangulations." In Automata, Languages and Programming. Springer, 1991, 661-73

Planar Minimally Rigid Graphs and Pseudo-Triangulations

Ruth Haas ${ }^{\mathrm{a}}$, David Orden ${ }^{\mathrm{b}, 1}$, Günter Rote ${ }^{\mathrm{c}, 2}$, Francisco Santos ${ }^{\mathrm{d}, 1}$, Brigitte Servatius ${ }^{\mathrm{e}}$, Herman Servatius ${ }^{\mathrm{e}}$,
Diane Souvaine ${ }^{\mathrm{f}, 3}$, Ileana Streinu ${ }^{\mathrm{g}, 4}$, Walter Whiteley ${ }^{\mathrm{h}, 5}$

Image of Henneberg constructions removed due to copyright restrictions. Refer to: Page 34 from http://www.mpi-inf.mpg.de/conference/adfocs05/Rote.pdf.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
[Haas, Orden, Rote, Santos, Servatius, Servatius, Souvaine, Streinu, Whiteley 2005]

Images of collapsed pte-mechanisms removed due to copyright restrictions.
Refer to: Fig. 3 from Rote, G., F. Santos, and I. Streinu. "Expansive Motions and the Polytope of Pointed Pseudo-Triangulations." In Discrete and Computational Geometry. Springer, 2003, pp. 699-736.

Have any of the open problems been solved?

Courtesy of Brad Ballinger, David Charlton, Erik D. Demaine, Martin L. Demaine, John Iacono, Ching-Hao Liu, and SheungHung Poon. Used with permission.

[Ballinger, Charlton, Demaine, Demaine, Iacono, Liu, Poon 2009]

Folding Equilateral Plane Graphs

Zachary Abel ${ }^{1}$, Erik D. Demaine ${ }^{2}$, Martin L. Demaine ${ }^{2}$, Sarah Eisenstat ${ }^{2}$, Jayson Lynch ${ }^{2}$, Tao B. Schardl ${ }^{2}$, and Isaac Shapiro-Ellowitz ${ }^{3}$

Image of splitting a vertex and reconfiguring into a canonical state removed due to copyright restrictions. Refer to: Fig. 1, 2 from Abel, Z., E. D. Demaine, et al. "Folding Equilateral Plane Graphs." Proceedings of the 22nd International Symposium on Algorithms and Computation, Lecture Notes in Computer Science 7074 (2011): 574-83.
[Abel, Demaine, Demaine, Eisenstat, Lynch, Schardl, Shapiro-Ellowitz 2011]

I'd like a little more intuition

 on why 4D is so radically different than 3D for locked linkages.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
[Cocan \& O'Rourke 2001]

MIT OpenCourseWare
http://ocw.mit.edu

6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

