Has the conjecture based on "fractal paper" been resolved?

Construction of Common Unfolding of a Regular Tetrahedron and a Cube

Toshihiro Shirakawa* Takashi Horiyama ${ }^{\dagger} \quad$ Ryuhei Uehara ${ }^{\ddagger}$

Drawing of unfolding of a cube and a tetramonohedron removed due to copyright restrictions.
Refer to: Fig. 4 from Shirakawa, T., T. Horiyama, et al. "Construct of Common Development of Regular
Tetrahedron and Cube." 27th European Workshop on Computational Geometry (2011): 47-50.

Any new results in a net for 3 different boxes?

Common Developments of Several Different Orthogonal Boxes

Zachary Abel*

Erik Demaine ${ }^{\dagger}$
Martin Demaine ${ }^{\ddagger}$
Hiroaki Matsui ${ }^{\S}$
Günter Rote ${ }^{〔}$ Ryuhei Ueharall

[Abel, Demaine, Demaine, Matsui, Rote, Uehara 2011]

Common Developments of Several Different Orthogonal Boxes

Courtesy of Zachary Abel, Erik Demaine, Martin Demaine, Hiroaki
Matsui, Günter Rote, and Ryuhei Uehara. Used with permission.

Common unfolding of
$4 \times 4 \times 8$ box and $\sqrt{10} \times 2 \sqrt{10} \times 2 \sqrt{10}$ box
[Abel, Demaine, Demaine, Matsui, Rote, Uehara 2011]

Input : None;
Output: Polygons that consist of 22 squares and fold to boxes of size $1 \times 1 \times 5$ and $1 \times 2 \times 3$;
1 let L_{1} be a set of one unit square;
2 for $i=2,3,4, \ldots, 22$ do
$3 \quad L_{i}:=\emptyset$;
4 for each common partial development P in

$$
L_{i-1} \text { do }
$$

 for every polygon \(P^{+}\)of size \(i\) obtained by
 attaching a unit square to \(P\) do
 check if \(P^{+}\)is a common partial
 development, and add it into \(L_{i}\) if it is a
 new one;
 end
 end
 9 end

10 output L_{22};

i	1	2	3	4	5	6	7	8	9
L_{i}	1	1	2	5	12	35	108	368	1283
i-ominos	1	1	2	5	12	35	108	369	1285
i	10	11	12	13	14				
L_{i}	4600	16388	57439	193383	604269				
i-ominos	4655	17073	63600	238591	901971				
i	15	16							
17	17	18							
L_{i}	1632811	3469043	5182945	4917908					
i-ominos	3426576	13079255	50107909	192622052					
i	19	20							21
L_{i}	2776413	882062	133037	2263					

Common Developments of Three Different Orthogonal Boxes

Toshihiro Shirakawa

Ryuhei Uehara*

Abstract

We investigate common developments that can fold into plural incongruent orthogonal boxes. It was shown that there are infinitely many orthogonal polygons that fold into two incongruent orthogonal boxes in 2008. In 2011, it was shown that there exists an orthogonal polygon that folds into three boxes of size $1 \times 1 \times 5,1 \times 2 \times 3$, and $0 \times 1 \times 11$. It remained open whether there exists an orthogonal polygon that folds into three boxes of positive volume. We give an affirmative answer to this open problem: there exists an orthogonal polygon that folds into three boxes of size $7 \times 8 \times 56,7 \times 14 \times 38$, and $2 \times 13 \times 58$. The construction idea can be generalized, and hence there exists an infinite number of orthogonal polygons that fold into three incongruent orthogonal boxes.

1 Introduction

Since Lubiw and O'Rourke posed the problem in 1996

Figure 1: Cubigami.
three incongruent orthogonal boxes of size $7 \times 8 \times 56$, $7 \times 14 \times 38$, and $2 \times 13 \times 58(\text { Figure } 2)^{1}$.

The construction idea can be generalized. Therefore, we conclude that there exist infinitely many orthogonal

[Shirakawa \& Uehara 2012]
$a \times 2 a \times(2 a+3 b)$ box

I'm kind of unsettled by the non-area-preserving unfolding. If it

 were a true limit then we'd be able to get arbitrarily close to the nonpreserved area by unfolding into sufficiently many pieces. But this isn't the case: either we get the nonpreserved area by unfolding into infinitely many pieces, or we get the original area, by unfolding into finitely many pieces.

Image by MIT OpenCourseWare.
[Benbernou, Cahn, O’Rourke 2004]

Photographs of Strandbeests removed due to copyright restrictions.

Theo Jansen's Strandbeests

$$
\begin{aligned}
& a=38 \\
& b=41.5 \\
& c=39.3 \\
& d=40.1 \\
& e=55.8 \\
& f=39.4 \\
& g=36.7 \\
& h=65.7 \\
& i=49 \\
& j=50 \\
& k=61.9 \\
& l=7.8 \\
& m=15
\end{aligned}
$$

Diagram removed due to copyright restrictions.

Image by MIT OpenCourseWare.
See also http://www.strandbeest.com/beests_leg.php/.
[Theo Jansen]

Courtesy of Jansen Walker by 4volt.com. License CC BY-NC-SA.
[4volt.com]

Theo Jansen's Strandbeests

Jansen mechanism
Ghassaei mechanism [2011]

Courtesy of Amanda Ghassaei. Used with permission.
85\% less center of mass movement

Theo Jansen's Strandbeests

Theo Jansen's Strandbeests

Photographs of Strandbeests removed due to copyright restrictions.

Theo Jansen's Strandbeests

Photographs of Strandbeests removed due to copyright restrictions.

Theo Jansen's Strandbeests

Photographs of Strandbeests removed due to copyright restrictions.

http://vimeo.com/44057387

Theo Jansen's Strandbeests

Photographs of Strandbeests removed due to copyright restrictions.

Theo Jansen's Strandbeests

Photographs of Strandbeests removed due to copyright restrictions.

Photographs of Theo Jansen assembly kits removed due to copyright restrictions.
Refer to: http://www.strandbeest.com/shop/index_usa.php.
To view video: http://www.youtube.com/watch?v=tHXy1nmVXg4 \&
http://www.youtube.com/watch?v=i8KVXy-vluU.

Photographs of Theo Jansen 3D-printed models removed due to copyright restrictions.
Refer to: http://www.strandbeest.com/shop/beasts_3d.php.

Kinetic Creatures http://www.kineticcreatures.com

Kinetic Creatures

http://vimeo.com/52366409

Land Crawler eXtreme Locomotion Demo Video

Poster for "Ocean Beasts" exhibit at The Simons Center (July-August 2012) removed due to copyright restrictions.

Arthur Ganson

Machine with Roller Chain

Machine with Oil

MIT OpenCourseWare
http://ocw.mit.edu

6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

