MIT 6.849 Geometric Folding Algorithms Prof. Erik Demaine

Lecture 6:
Origami Art and Design

Guest Lecturer: Jason Ku

September 27, 2010

Origami Art

- Akira Yoshizawa
- Hideo Komatsu
- Takashi Hojyo
- David Brill
- Michael LaFosse
- Eric Joisel
- Robert Lang
- Brian Chan
- Satoshi Kamiya
- Jason Ku
http://www.origami.vancouver.bc.ca/ http://www.origami.gr.jp/~komatsu/ http://origami.gr.jp/~hojyo http://www.brilliantorigami.com/ http://www.origamido.com http://www.ericjoisel.com http://www.langorigami.com/ http://chosetec.darkclan.net/origami/ http://www.folders.jp/
http://scripts.mit.edu/~jasonku/

Tree Theory Review

1) Start with object
2) Draw tree
3) Change tree into uniaxial base
4) Shape uniaxial base

Uniaxial Bases

I. in $z \geq 0$ half plane

2. intersection with $\mathrm{z}=0$ plane $=$ projection onto the plane
3. partition of faces into flaps, each projecting to a line segment
4. hinge crease shared by two flaps project to a point
5. graph of flap projections as edges is a tree
6. only one point of paper folds to each leaf

Uniaxial Bases

I. flaps lie along or straddle a single line (the axis)
2. flaps hinge perpendicular to the axis
3. can thin to stick figure (tree)

Flaps

Flaps

Idea of 'elevation’ on a flap/tree edge
Rivers separate two parts of a tree with strip of constant width Circle limiting case of river separating single point from rest Splitting a leaf edge into a leaf and brach creates a redundant node

Flaps

Idea of 'elevation' on a flap/tree edge
Rivers separate two parts of a tree with strip of constant width Circle limiting case of river separating single point from rest Splitting a leaf edge into a leaf and brach creates a redundant node

Courtesy of Jason Ku. Used with permission.

Flaps

Idea of 'elevation’ on a flap/tree edge
Rivers separate two parts of a tree with strip of constant width Circle limiting case of river separating single point from rest Splitting a leaf edge into a leaf and brach creates a redundant node

Flaps

Idea of 'elevation’ on a flap/tree edge
Rivers separate two parts of a tree with strip of constant width Circle limiting case of river separating single point from rest Splitting a leaf edge into a leaf and brach creates a redundant node

Flaps

Tree edges can be oriented anyway we like because if uniaxial base is infinitely thinned, base is actually stick figure Space between circles is wasted paper and maps to a single tree node

Flaps

Flaps

Tree edges can be oriented anyway we like because if uniaxial base is infinitely thinned, base is actually stick figure
Space between circles is wasted paper and maps to a single tree node

Flaps

Flaps

Flaps

Flaps

Flaps

Tree edges can be oriented anyway we like because if uniaxial base is infinitely thinned, base is actually stick figure
Space between circles is wasted paper and maps to a single tree node

Practice!

Which trees represent the given CRP?
Courtesy of Jason Ku. Used with permission.

Practice!

Which trees represent the given CRP?
Courtesy of Jason Ku. Used with permission.

Practice!

Which trees represent the given CRP?
Courtesy of Jason Ku. Used with permission.

Practice!

Practice!

Which CRP correspond to the given tree?
CRP 1, 2, and 5 have similar trees, but different space allocation
(CRP $=>$ Tree) $=$ unique
(Tree $=>$ CRP) $=$ non-unique

Practice!

Which CRP correspond to the given tree?
CRP 1, 2, and 5 have similar trees, but different space allocation
(CRP $=>$ Tree) $=$ unique
(Tree $=>$ CRP) $=$ non-unique

Model vs. Reality

In reality, CRP is an idealization
By definition, locus of all possible hinge creases represents something topologically similar to a CRP
Can read off tree as before

Model vs. Reality

In reality, CRP is an idealization
By definition, locus of all possible hinge creases represents something topologically similar to a CRP
Can read off tree as before

Model vs. Reality

In reality, CRP is an idealization
By definition, locus of all possible hinge creases represents something topologically similar to a CRP
Can read off tree as before

Model vs. Reality

In reality, CRP is an idealization
By definition, locus of all possible hinge creases represents something topologically similar to a CRP
Can read off tree as before

Model vs. Reality

In reality, CRP is an idealization
By definition, locus of all possible hinge creases represents something topologically similar to a CRP
Can read off tree as before

TreeMaker Example

Symmetry (book/diagonal)
Identifying/fixing unconstrained nodes with local strain
Triangulation of creasepattern (need three degrees of freedom)
View Settings

Useful Features in TreeMaker

Conditions

- axis of symmetry conditions
- force paths to be active or at specific angles
- force nodes to edge/corner/specific locations

Tree manipulation

- adding local strain (Menu/Action/Scale Selection/)
- triangulation (Menu/Edit/Stub/Triangulate Tree/)

Views

- Menu/View/Show View Settings/ very useful
- Can view just locus of hinge creases by turning off all but (Creases/Minor Creases) and (Creases/Lines)

Possible Problems in Optimization

Problem: A polygon bounded by active paths is concave Solution: add extra leaf node in interior \& expand (split polygon into multiple convex polygons)

Problem: A polygon bounded by active paths contains an unconstrained node
Solution: add local strain to interior node to create additional active paths

Problem: Optimizer can not find a solution due to trying to optimize under too many constraints
Solution: decrease the number of additional constraints

Example Files

- crab_book.tmd5 = crab with book symmetry
- crab_diag.tmd5 = crab with diagonal symmetry
- crab_book_tri.tmd5 = triangulated version of book
- crab_diag_tri.tmd5 = triangulated version of diagonal

Non-TreeMaker Example

22.5 degree folding

Constrained under back geometry
Taking thickness into account Non-uniaxial in ultimate folded form Texture

Non-TreeMaker Example

22.5 degree folding

Constrained under back geometry
Taking thickness into account
Non-uniaxial in ultimate folded form
Texture

Non-TreeMaker Example

22.5 degree folding

Constrained under back geometry
Taking thickness into account
Non-uniaxial in ultimate folded form
Texture

Non-TreeMaker Example

Origami Forum

http://www.thekhans.me.uk/forum/

For more information on all things origami...
Courtesy of Jason Ku. Used with permission.

MIT's Origami Club

Weekly Meetings
Sundays 2-4pm
Student Center

http://origamit.scripts.mit.edu

MIT OpenCourseWare
http://ocw.mit.edu

6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

