

Image by MIT OpenCourseWare.
See also http://erikdemaine.org/papers/PaperBag_OSME2006/.

HOW TO DRAW A STRAIGHT LINE;

A

LECTURE ON LINKAGES.

BY
A. B. KEMPE, B.A.,

OF THE INNER TEMPLE, ESQ.;
MEMBER OF THE COUNCIL OF THE LONDON MATHEMATICAL SOCIETY; AND LATE SCHOLAR OF TRINITY COLLEGE, CAMBRIDGE.

WITH NUMEROUS ILLUSTRATIONS

Fig. 2.

These images are in the public domain, and are available at Project Gutenberg.
Source: Kempe, A. B. How to Draw a Straight Line. MacMillan and Co., 1877.

Gutenberg edition produced by Joshua Hutchinson, David Wilson, \& Online Distributed Proofreading Team

Created from Cinderella applet by Erik Demaine:
http://courses.csail.mit.edu/6.849/fall10/lectures/L08_applets/L08_square1.html.

This image is in the public domain, and is available through Oxford Journals. Source: Kempe, A. B. On a General Method of describing Plane Curves of the nth degree by Linkwork, 1876.

$$
\begin{aligned}
& >\operatorname{subs}(\{x=r / 2 * \cos (\text { alpha })+r / 2 * \cos (\text { beta) }, \\
& \quad y=r / 2 * \sin (\text { alpha })+r / 2 * \sin (\text { beta) }\}, \\
& \left.\quad x^{\wedge} 3 * y-5 * x^{*} y^{\wedge} 2\right) ;
\end{aligned} \begin{aligned}
& \left(\frac{1}{2} r \cos (\alpha)+\frac{1}{2} r \cos (\beta)\right)^{3}\left(\frac{1}{2} r \sin (\alpha)+\frac{1}{2} r \sin (\beta)\right)-5\left(\frac{1}{2} r \cos (\alpha)+\frac{1}{2} r \cos (\beta)\right)\left(\frac{1}{2} r \sin (\alpha)\right. \\
& \left.\quad+\frac{1}{2} r \sin (\beta)\right)^{2}
\end{aligned}
$$

$>$ expand (\%);
$\frac{1}{16} r^{4} \cos (\alpha)^{3} \sin (\alpha)+\frac{1}{16} r^{4} \cos (\alpha)^{3} \sin (\beta)+\frac{3}{16} r^{4} \cos (\alpha)^{2} \cos (\beta) \sin (\alpha)$
$+\frac{3}{16} r^{4} \cos (\alpha)^{2} \cos (\beta) \sin (\beta)+\frac{3}{16} r^{4} \cos (\alpha) \cos (\beta)^{2} \sin (\alpha)+\frac{3}{16} r^{4} \cos (\alpha) \cos (\beta)^{2} \sin (\beta)$ $+\frac{1}{16} r^{4} \cos (\beta)^{3} \sin (\alpha)+\frac{1}{16} r^{4} \cos (\beta)^{3} \sin (\beta)-\frac{5}{8} r^{3} \cos (\alpha) \sin (\alpha)^{2}-\frac{5}{4} r^{3} \cos (\alpha) \sin (\alpha) \sin (\beta)$
$-\frac{5}{8} r^{3} \cos (\alpha) \sin (\beta)^{2}-\frac{5}{8} r^{3} \cos (\beta) \sin (\alpha)^{2}-\frac{5}{4} r^{3} \cos (\beta) \sin (\alpha) \sin (\beta)-\frac{5}{8} r^{3} \cos (\beta) \sin (\beta)^{2}$
$>$ combine (\%,trig);
$\frac{1}{128} r^{4} \sin (4 \beta)+\frac{1}{128} r^{4} \sin (4 \alpha)+\frac{1}{16} r^{4} \sin (2 \alpha)+\frac{1}{32} r^{4} \sin (\beta+3 \alpha)+\frac{1}{64} r^{4} \sin (-\beta+3 \alpha)$

$$
+\frac{3}{32} r^{4} \sin (\beta+\alpha)+\frac{3}{64} r^{4} \sin (2 \beta+2 \alpha)+\frac{1}{16} r^{4} \sin (2 \beta)+\frac{1}{32} r^{4} \sin (3 \beta+\alpha)-\frac{1}{64} r^{4} \sin (-3 \beta
$$

$$
+\alpha)-\frac{15}{32} r^{3} \cos (\alpha)+\frac{5}{32} r^{3} \cos (3 \alpha)-\frac{5}{32} r^{3} \cos (2 \alpha-\beta)+\frac{15}{32} r^{3} \cos (2 \alpha+\beta)-\frac{5}{32} r^{3} \cos (\alpha
$$

$$
-2 \beta)+\frac{15}{32} r^{3} \cos (\alpha+2 \beta)-\frac{15}{32} r^{3} \cos (\beta)+\frac{5}{32} r^{3} \cos (3 \beta)
$$

Created from Cinderella applet by Erik Demaine: http://courses.csail.mit.edu/ 6.849/fall10/lectures/L08_applets/L08_Contraparallelogram.html.

Drag the red slider to adjust the side
lengths of the contraparallelogram

Fig. 1.

This image is in the public domain, and is available through Oxford Journals. Source: Kempe, A. B. On a General Method of describing Plane Curves of the nth degree by Linkwork, 1876.

This image is in the public domain, and is available through Oxford Journals. the nth degree by Linkwork, 1876.

Image by MIT OpenCourseWare.

(A)

(B)

MIT OpenCourseWare
http://ocw.mit.edu

6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

