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Introduction: Goals of the Laboratory

As we’ve seen in lecture, broadly speaking there are two distinct current approaches to semantic inter-
pretation, each with its own characteristics and (perhaps) applications.

Accordingly, In this laboratory you will design and write rules to extend a system that does semantic
interpretation. The system works in conjunction with a context-free parser and the same kind of atomic
nonterminal phrase structure grammar you wrote in Laboratory 2. When you have completed the
assignment, you should understand the principles of compositionality in semantics and how that relates
to syntactic analysis. And, you should know how to “put it all together”: you will have extended an
English interface to a simple database that will be able to either add facts to the database or retrieve
answers from it:

athena>(top-level)
shall i clear the database? (y or n) y
sem-interpret>John saw Mary in the park
ok.

sem-interpret>where did john see mary
in the park.

sem-interpret>john gave fido to mary
ok.

sem-interpret>who gave john fido
i don’t know

sem-interpret>who gave mary fido
john

sem-interpret>john saw fido
ok.

sem-interpret>who did john see
fido and mary

In general, this laboratory will involve a lot more reading and thinking than code writing. Most of the
rules for the system have been already written; you will simply be adding some new ones to handle
new sentence types, including some of those above (see section 3 below). For instance, the rules as
given cannot handle John gave Fido to Mary or Who gave Mary Fido. Once you understand the basic
idea behind the system, described in more detail in section 4, it is fairly straightforward to add new
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capabilities; in fact, if you examine the existing system you will find that many of its capabilities have
not been exploited in this laboratory. (See section 4 for more example traces.)

As usual, a completed laboratory will consist of a description and explanation of what you did to
get your new rules to work, along with traces demonstrating that your new rules operate as advertised,
and can reproduce the input-output described below. As usual, send a pointer to your web write-up  .

In particular, this laboratory is designed to get you to understand the following four assumptions about
the design of semantic interpreters, which have played a leading role in many contemporary approaches
to sentence meaning (the method adopted here is one due essentially to R. Montague, but the same
assumptions show up in many other systems):

1. The rule-to-rule principle of semantic interpretation: for each syntactic rule in the grammar,
there is one rule of semantic interpretation. In the laboratory system this is implemented directly
by pairing each context-free rule with a corresponding semantic rule (see section 4 below).

2. Compositionality: The meaning of a phrase is a function of the (meaning of) its parts, and
nothing more. Again, this is implemented transparently by defining the “meaning” of, say, an
S in the rule S→ NP VP as the result of the composition of the “meaning” of the VP and the
“meaning” of the NP. In particular, we take the VP’s meaning as supplying a procedure that is
called with the “meaning” of the NP as its argument. (You might want to think about what sorts
of sentences do not obey this principle, a question we raise again below.)

3. Truth-conditional meaning: the meaning of a sentence is equated with a set of conditions
that make the sentence true or false. That is, it assumes that to know the meaning of a sentence
is to know the set of conditions or the way the world would have to be in order for the sentence to
be true—a relation between language and the world. Hence this approach adopts what is called
a correspondence theory of truth. This is not a logically necessary component of a theory of
meaning; there are alternatives such as the “mental picture” view or the “appropriate use” view
of sentence meaning.

In our laboratory’s database world, the conditions for truth-correspondence are simple: the collec-
tion of “true facts” is represented by a set of (recursive) templates that stand for “event structures”
of the form,

(EVENT :condition1 val1 :condition2 val2 ... :conditionN valN)

where an EVENT is just the main verb of a sentence and a constructed template is true iff
it matches some template in this set (using a definition of match that is defined in the file
match-allowing-extras). Note that we could also think of this as a thematic representation
of the sentence.

4. Model-theoretic semantics: the correlation between language and the world can be explicated
by building mathematical models of worlds using the machinery of set theory, and mapping linguis-
tic expressions into them. Typically, lexical items are associated with set-theoretic objects. For
example, we might associate the nouns of a language (Mary , guy) with the subsets of individuals
in our model world that contains Mary or guy , etc. Syntactic rules for building phrases are associ-
ated with rules for combining set-theoretic objects. In our laboratory system, the rule-combining
functions are built by constructing lisp procedures (in effect, the lambda-calculus).

It’s easy to see why these assumptions have proved so popular with a database-oriented query language
design: after all, we can view objects and relations in databases as just sets of objects. In this laboratory,
it is interesting to see just how each of these assumptions gets cashed out.
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2 Loading and running the system

First, attach 6.863 as usual, and then cd to the directory semantics under the course locker. Add
Allegro common lisp via the following commands, and fire up Allegro common lisp via the command
mlisp as shown. We have indicated how to use mlisp by running it under xemacs — this is much easier
to use than just the command-line interface one would get with mlisp alone.

athena>add acl; mlisp-xemacs &

If one runs just the command mlisp alone, you will get back just the following immediately below.
Otherwise, with the mlisp-xemacs& command, an emacs window should pop-up, that puts you in a
Common Lisp listener environment, and then you should see the same sort of start up verbiage, but
in this window. You proceed to load the semantic interpreter as shown. (We strongly recommend
that you use xemacs in conjunction with Common Lisp.) If you’ve invoked mlisp-xemacs properly,
In the xemacs buffer, you should see at the bottom the tag line ACL Idle *common-lisp* followed by
Inferior Common Lisp, indicating that you are running Common Lisp from within xemacs.

*common-lisp*

======================================================
Starting image ‘/mit/acl_v6.2/distrib/@sys/acl62/mlisp’

with no arguments
in directory ‘nil’
on machine ‘localhost’.

International Allegro CL Enterprise Edition
6.2 [Solaris] (Jun 26, 2002 11:20) 
Copyright (C) 1985-2002, Franz Inc., Berkeley, CA, USA. All Rights Reserved. 

This development copy of Allegro CL is licensed to:
[TC3004] MIT Software Acquisition

;; Optimization settings: safety 1, space 1, speed 1, debug 2. 
;; For a complete description of all compiler switches given the current 
;; optimization settings evaluate (explain-compiler-settings). 
;;--- 
;; Current reader case mode: :case-sensitive-lower 
cl-user(1): 

Now you can load the file semantics.lisp, which will set up the semantic interpreter. (This assumes
you are already in the /mit/6.863/semantics/ directory. If not, you have to give the full pathname.)

cl-user(1): (load "semantics")
Loading /afs/athena.mit.edu/course/6/6.863/semantics/semantics.lisp
; Loading /mit/6.863/semantics/earley.lisp
; Loading /mit/6.863/semantics/match-allowing-extras.lisp
; Loading /mit/6.863/semantics/interpreter.lisp
; Loading /mit/6.863/semantics/new-rules.lisp
; Loading /mit/6.863/semantics/new-words.lisp
t
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Now you can fire up the read-eval loop for semantic interpretation:

cl-user(2): (top-level) 
shall i clear the database? (y or n) y 
sem-interpret>john saw mary 

syntax: (root
(s (np (np-pro (name john)))

(vp (v+args (v2+tns saw) (np (np-pro (name mary)))))))

semantics: (see :agent john :patient mary :tense past)

ok.

sem-interpret>did john see mary

syntax: (root
(q-wh (aux%do%modal (aux%do+tns did))
(np (np-pro (name john)))
(vbar-tns (v2-tns see) (np (np-pro (name mary))))))

semantics: yes/no-question (see :agent john :patient mary :tense past) 

yes. 
sem-interpret> [just a carriage return entered] 

cl-user:(3): 

To actually use the semantic interpreter, one can use either one of two modes: (1) enter a read-evaluate-
print loop, via the procedure (top-level); or (2) run through a batch list of test sentences via the
procedure test-semantics.

If you use the first method, one can enter sentences one at a time, as shown below. Entering just a
carriage return without any sentence, atlernatively, quit, will exit the read-eval-print loop and return
you to common lisp’s toplevel. Note that the first thing the system does is ask whether or not you want
to clear the database of facts, stored in the global variable *db*; you enter y if you do, to start with
a clean slate and n if not. If you don’t clear the db, whatever values have been previously stored are
carried over. Note also that no punctuation is used and capitalization is ignored.

To get rid of the syntax: and semantics: lines so that one just sees your input and the system’s
response, simply set the global variables *show-syntax?* and *show-semantics?* to nil:

cl-user(2): (setf *show-syntax?* nil *show-semantics?* nil) 
NIL 
cl-user(3): (top-level) 
shall i clear the database? (y or n) y 
sem-interpret>john saw mary 

ok. 
cl-user(4): (top-level) 
Shall I clear the database? (y or n) n 
sem-interpret>did john see mary 

yes. 
sem-interpret> 
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The second method of interaction requires that you bind a list of sentences to the global variable
*semantics-tests*, and then call test-semantics (without any arguments). This leaves the fact-
database untouched.

athena>(setf *semantics-tests* ’("john saw mary" "did john see mary"))

("john saw mary" "did john see mary")

athena> (init-syntax)

athena> (test-semantics)

sentence: "john saw mary"

syntax:((root (s (np (np-pro (name john))) (vp (v+args (v2+tns saw)

(np (np-pro (name mary))))))))

ok.

semantics: NIL

sentence: "did john see mary"

syntax: ((root (q-wh (aux%do%modal (aux%do+tns did))

(np (np-pro (name john)))

(vbar-tns (v2-tns see) (np (np-pro (name mary)))))))

yes.

athena>

Finally, there are three utility functions that will be especially valuable in doing the laboratory, but
which are explained in section 4 below: trace-semantics, untrace-semantics, and list-semantics.
These do what you think they do — turn on/off tracing of the semantic interpretation, and list the
semantic interpretation rules themselves.

3 What you have to do for this lab

As it stands, the system uses the same style rules as in laboratory 2, coupled with the new semantic
interpretation machinery. The interpreter first parses sentences using the parser as in Lab 2. Each
syntactic and lexical rule is replaced with a pair of (syntactic, semantic) or (vocabulary, semantic)
rules. The first element of each pair has the same format as in lab 2, while the second element is a
lambda function, i.e., a procedure that will get invoked to determine the meaning associated with the
lefthand side of the rule. Syntactic rules are added via the procedure add-rule-sem, one for each phrase
structure rule; while vocabulary rules are added via the procedure add-word-semantics.

The resulting phrase structure(s), if any, are passed to the semantic interpreter. The interpreter
uses the semantic interpretation principles 1–4 above, along with its semantic interpretation rules, to
build a query/event template, which is used to either augment or retrieve information from a database
of facts (stored in the global variable *db*).

The paired syntactic/semantic rules for phrases are in the file

/mit/6.863/semantics/new-rules.lisp

The paired syntax-semantics rules for words are in the file

/mit/6.863/semantics/new-words.lisp

(see section 4 for a description of their format). The existing system can process simple declarative
sentences and simple yes-no questions.
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Your job in this lab is to add new paired syntactic and semantic rules for phrases and new paired
category and semantic vocabulary rules for words so that the system can correctly handle the following
statements/queries.

You will only have to modify the new-rules and new-words files in order to get this job done. Not
many new rules and vocabulary words need to be added . In particular, you should not have to modify
any of the supporting code that carries out the database matches, spits out answers, and so forth (unless
you want to do extra work, that is). Note that we implicitly provide the new syntactic rules you need
by giving below the desired output parse trees for the new sentences to handle. (You can just read off
the required syntactic rules from these.)

Your real work will be in writing/debugging the semantic rules for each syntactic rule so that
the system gives back appropriate answers, as shown below (see section 4 for a description of what
these rules look like). Full traces for these example sentences follow, showing the relevant parse
tree and semantic query output (for additional explanation of the semantic query templates and
other examples of the system in action see section 4 below). These sentences are also in the file
/mit/6.863/semantics/lab3-sentences.lisp, already set up in such a way that they can be more
easily run through the query interpreter. (We described above how to do this using test-semantics.
The file has everything already set up to go.)

What you must do: Starting from the grammar supplied in the file new-rules.lisp here are the
parse trees your final system should build and the resulting semantic interpretation query/fact templates
and answers that a successful rule set should produce for these examples. You should follow the sentence
order given below, so that you can be sure that the system gives the right answers to the questions that
it’s asked. Note that the parse trees output should immediately tell you what new phrase structure
rules to add. (The challenge is adding the appropriate semantics.)

Hand in: Traces that match the syntactic and semantic interpretations shown here, along with the
answers the system retrieves; your modified grammar rule and word rule files, along with brief comments
about what you added and why.

IMPORTANT: Please read section 4, describing how the interpreter works, before attempting to
add new rules.

In order to illustrate the steps you ought to go through in doing this, we show how to add the
syntactic and semantic rules for dealing with the second example sentence in your assignment list
below, John gave Fido to Mary . to – prepositional phrase type sentences, where the PP is an argument
to a verb such as give.

We describe in turn:

• What syntactic rule to add

• What semantic rule(s) to add;

• What word rule(s) to add

You first should look at the syntactic parse tree and the desired semantic output:
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sem-interpret>john gave fido to mary

syntax: (root
(s (np (np-pro (name john)))

(vp
(v+args (v3+tns gave) (np (np-pro (name fido)))
(pp+dat (p+to to) (np (np-pro (name mary))))))))

semantics: (give :agent john :patient fido :beneficiary mary :tense past)

ok.

We are given a syntactic parse tree and the resulting output semantic “event template” with its values
filled in. The event template is a (recursive) feature-value structure. What we don’t show, and what
you must be aware of, is the result of the function process-sentence on this meaning — it must either
add some information to the database, retrieve it, etc. You should examine the code to see that this is
essentially a case statement based on the type of sentence that is parsed, and we leave this to you. But
onwards.

From the syntactic tree, it’s straightforward to see that we must add the grammar rules to expand
verbs like give into a verb of a certain class, namely, class 3, and two arguments: an NP and a PP of
a special sort, PP+Dat. The “Dat” means “dative” verbs, like give that can appear in patterns like
gave Fido to John or gave John Fido. Note that we need to distinguish the PP here with the attached
tag “dat” so as ensure that the noun phrase part of this PP is taken as a real argument to the verb,
rather than a PP such as “in the park” which is not an argument to a verb, as in “John saw Fido in
the Park”. One could also execute this via a feature-based grammar, but we don’t do so here, and you
will not need to in this laboratory either. In short, from the parse tree we can read off two new phrase
structure rules that we must add:

v+args ==> v3+tns np pp+dat
pp+dat ==> p np

What about the corresponding semantic rules and words? We must pair a semantics rule for each
of the two new syntactic rules, and also add new entries (perhaps) for word semantics. Our goal is to
reach the semantic template displayed above, with the values filled in for agent, patient, and beneficiary.
The agent is the “doer” of the sentence — the thing/person carrying out the action; the beneficiary
is the recipient of the giving action; and the patient is the thing/item that is given. Before plunging
ahead, you should note that this “meaning template” is already provided by the entry for give in the
file new-words.lisp. Putting to one side the fluff that comes from the definitions in the file here that
are associated with the use of a macro, this template for v3+tns is this:

’(lambda (agent beneficiary patient)
‘(,v-tns :agent ,agent :patient ,patient :beneficiary ,beneficiary

:tense past))

Note the use of the backquote symbol here before the second line. If you don’t remember what backquote
does, then recall that just like the quote symbok, this is used to block evaluation and simply pass along,
everything inside the quoted expression, but with important difference of allowing the selective
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evaluation of some items inside the quoted expression. (This is in contrast to the good-old-regular quote
symbol which blocks evaluation of everything inside it). To evaluate any item inside a backquoted form,
we put a comma before it. So you will note that we’ve put a quote before the verb v-tns, and the three
arguments agent, patient and beneficiary. We have left the colon keywords :agent, :patient,
:beneficiary, and :tense as is. Finally, we have supplied the actualy value to be associated with the
tense keyword, namely, past — because for a verb v3+tns we know what the value should be. Thus,
these colon keywords will wind up as part of the actual output template, as is, while everything else,
aside from the value of the :tense keyword, will (eventually) have its value plugged in to give us the
actual output semantic form:

(give :agent john :patient fido :beneficiary mary :tense past)

OK, with this goal in mind, let us consider the pp+dat semantics rule first. Note that what we want
to do is have the noun phrase object of the Prepositional Phrase, e.g., “Mary” in “to Mary” passed
on as the argument of the verb give that fills the position of the beneficiary (recipient) of give’s
action. We deduce this from looking at the semantic template. But this means we don’t care about the
preposition at all, and just want to “pass up” the semantic meaning (lambda form) associated with the
NP. So our corresponding semantic rule should look like the following. It must be a lambda form of two
arguments — the two nodes in the parse tree on the right-hand side of the context-free rule, p and np,
and the semantic action should be just calling the function p on the argument (value of) np. That will
ensure that, whatever the “value” of the noun phrase, it will get passed up to the v+args node. We
call functions explicitly in lisp via the function funcall which takes the name of the function and its
arguments.

’(lambda (p np)
(funcall p np))

So, our complete new rule for pp+datshould look like this:

(add-rule-sem ’(pp+dat ==> p np)
’(lambda (p np)

(funcall p np)

This also tells us right away what the corresponding semantics should be for the corresponding word
associated with the preposition to: since we just want to “pass up” the value of the noun phrase, the
semantics of to can simply be the identity function. When the identity function is applied to the value
of the noun phrase, it simply returns the value of the noun phrase as its result, just as desired:

(add-word-semantics ’to ’p ’identity)

And that is it for dealing with the dative prepositional phrase — just one semantic rule for the
phrase, and one for the word entry for to (Yes: of course there is another semantic entry for to that
corresponds to its meaning as a locational preposition — you might think about how to add that. But
we don’t do so in this lab.)

What about the semantic rule to pair with the expansion of v3+args? Again, to start out, just
as with the pp+dat expansion, there are three phrases on the righthand side of the rule that expands
v3+args, and so three arguments to the associated lambda form. So the associated semantic rule must
begin:



9Semantic Interpretation with phrase structure grammars

’(lambda (v3+tns np pp+dat)
.......

But now we must do something a bit more subtle than just bluntly returning the straight-out value as
before. What is the “value” (meaning) of a verb phrase? In the case of verb phrase expansions like
this, recall that we want our function (our lambda form) to return a function as its value — that
is, we want to return a lambda form. This is the “meaning” of the v3+args phrase, and in turn, the
meaning of the VP, which will eventually be applied to the value of the Subject noun phrase.

In other words, what we want to return as the value of the lambda form for v3+tns is itself a lambda
form, with a single argument, the subject of the sentence. So we should start out like this:

’(lambda (v3+tns np pp+dat)
‘(lambda (subj).....

As before, here we need to use a backquote, because at this point in our assembly of the function calls
to fill in the meaning template we don’t want to apply the function now, but only when we have finally
gotten a hold of the value (meaning) of the subject noun phrase, which we don’t know at this point.
On the other hand, we do know the meanings associated with the verb entry v3+tns, which has been
provided to us already. So, we want the value of the semantic entry for v3+tns, which we can grab by
putting a comma before its name —- this forces evaluation even behind the ”shield” of a backquote, in
contrast to a regular quotation symbol:

’(lambda (v3+tns np pp+dat)
‘(lambda (subj)

(funcall ,v3+tns ....

Finally, the function associated with the verb entry for v3+tns must be called with its three arguments.
Of these three arguments, the subject argument is not yet known at all, so we just leave it as a dummy
variable at this point, subj. However, the two other arguments to the verb, the NP and the PP
argument are known: they are the lambda forms passed up “from below”. So, at first blush, one might
think that the correct way to write the semantic rule for v+args would be as follows, with commas in
front of the pp+dat and np arguments. This is almost correct, but not quite:

’(lambda (v3+tns np pp+dat)
‘(lambda (subj)

(funcall ,v3+tns subj ,pp+dat ,np))

What’s wrong with this? Note we want to apply the function associated with v3+tns to the actual
values of the arguments that follow. But if we put only commas in front of pp+dat and np, this will force
evaluation of these forms as we desire, but it will go too far and leave the arguments as ’naked’ values
that the Lisp interpreter will (incorrectly) try to further evaluate as functions. To see this, consider, for
example, the NP Mary in “give Fido to Mary.” Our previous rule for pp+dat will give the semantics
for the NP object as simply the constant Mary. So, if we retrieve this value via the lisp code ,pp+dat,
this will first return the form Mary but then incorrectly try to evaluate the constant Mary as if it
were a variable with a value. Since Mary does not have any value besides itself, this would cause an
error. Clearly, what we want to do is to put a quote in front of Mary so that its literal value is what
is returned. Similarly for the other argument, Fido. Thus, what we really want is this, where we have
put quote marks in front of the two arguments corresponding to the dative NP object and the second
NP object
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’(lambda (v3+tns np pp+dat)
‘(lambda (subj)

(funcall ,v3+tns subj ’,pp+dat ’,np))

This is the correct form. So, in all, we had to add two new paired syntax/semantics rules, one for the
expansion of a dative pp, and one for the expansion of a dative verb. We had to add just one new
lexical entry, for to. And now we’re done. Note that we don’t have to add anything at all to handle
new words for NPs, since this is already taken care of by the semantics we need for NPs anyway. That
is the beauty of decomposition. In general, you will find that this is typical: you should not have to
add very many new rules or word entries to handle each new sort of sentence.

One more word of advice before moving on to the example sentences themselves. Note that the
pattern-matcher used to match and retrieve facts from the database is very very over-simplified. Con-
sider an event structure for, e.g., John saw Mary in the park , where we have added a sub-part :location
to the event structure to correspond to the location in the park :

(see :agent john :patient mary :tense past :location (park :definite? t
:number singular))

In order that the system can still get a partial match for a question like, Did John see Mary? , which
would have only the more general event structure,

(see :agent john :patient mary :tense past)

the procedure match-allowing-extras allows the previous event structure to match the one directly
above — as its name implies. However, this function is very very stupid, and requires that the elements
that do match be present in the SAME order in both event structures. (Obviously this can be repaired
— a topic for final projects: one should sort the keywords. . . ). So, you must just take care here,
otherwise, the matching/retrieval won’t work properly.

The example sentences you must handle in this laboratory

Please note the use of lower-case for word input.

1. john gave mary fido (this is already handled!)

2. john gave fido to mary

3. did john give fido to mary

4. did john give mary fido

5. mary kissed john

6. fido was kissed

7. john was kissed by mary

8. john saw fido (this is already handled!)

9. john saw mary (as is this!)
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10. who saw fido

11. who did john see

12. who gave mary fido

13. who gave john fido

14. who gave fido to mary

15. who did john give fido to

16. who did john give to mary

17. who kissed fido

18. who did mary kiss

19. who was kissed by mary

20. did somebody kiss fido

There are three basic classes of sentences to be added for semantic interpretation: (1) rules to handle
to- PPs after verbs like give — this we’ve already shown you how to do; (2) passive sentences; and (3)
wh-questions beginning with who. In order to actually add in new rules, you will have to modify two
global variables:

*word-semantics-file*

and

*rule-semantics-file*

so their values match the names of your own files for word and rule definitions, e.g.,

(setf *rule-semantics-file* "/mit/mydir/my-rule-file")
(setf *word-semantics-files* "/mit/mydir/my-word-vocabulary-file")

These variables are used by the routine init-syntax which does the actual work of reading in the
grammar rules, building the Earley-style table and the associated semantic interpretation rules, and then
running the syntax parser on a simple test sentence. If you change the values of *rule-semantics-file*
and *word-semantics-file then init-syntax will read in your new definitions. The way the system
is set up these will have to be copies of whatever is in new-rules.lisp and new-words.lisp plus any
new rules that you have added, residing in your own directory as shown above. The format for new
rules is described below in section 4.

Traces of the lab example sentences

;;; Examples for lab

sem-interpret>>john gave mary fido

syntax: (root

(s (np (np-pro (name john)))

(vp (v+args (v3+tns gave) (np (np-pro (name mary)))

(np (np-pro (name fido)))))))

semantics: (give :agent john :patient fido :beneficiary mary :tense past)

ok.
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sem-interpret>john gave fido to mary

syntax: (root

(s (np (np-pro (name john)))

(vp

(v+args (v3+tns gave) (np (np-pro (name fido)))

(pp+dat (p+to to) (np (np-pro (name mary))))))))

semantics: (give :agent john :patient fido :beneficiary mary :tense past)

ok.

sem-interpret> did john give fido to mary

syntax: (root

(q-wh (aux%do%modal (aux%do+tns did)) 
(np (np-pro (name john))) 
(vbar-tns (v3-tns give) (np (np-pro (name fido))) 

(pp+dat (p+to to) (np (np-pro (name mary)))))))

semantics: yes/no-question (give :agent john :patient fido :beneficiary mary :tense past)

yes.

sem-interpret> did john give mary fido

syntax: (root

(q-wh (aux%do%modal (aux%do+tns did))

(np (np-pro (name john))) (vbar-tns (v3-tns give)

(np (np-pro (name mary)))

(np (np-pro (name

fido))))))

semantics: yes/no-question (give :agent john :patient fido :beneficiary mary :tense past)

yes.

sem-interpret> mary kissed john

syntax: (root

(s (np (np-pro (name mary)))

(vp (v+args (v2+tns kiss) (np (np-pro (name john)))))))

semantics: (kiss :agent mary :patient john :tense past)

ok.
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sem-interpret>fido was kissed

syntax: (root

(s (np (np-pro (name fido)))

(vp (aux%be+tns was) (v+passp (v2+passp kissed)))))

semantics: (kiss :agent somebody :patient fido :tense past :type passive) 
ok. 

sem-interpret> john was kissed by mary 

syntax: (root 
(s (np (np-pro (name john))) 

(vp (aux%be+tns was) (v+passp (v2+passp kissed) 
(pp+agby (p by) (np (np-pro (name mary)))))))) 

semantics: (kiss :agent mary :patient john :tense past :type passive) 

ok. 

sem-interpret> john saw fido 

syntax: (root 
(s (np (np-pro (name john)))

(vp (v+args (v2+tns saw) (np (np-pro (name fido)))))))

semantics: (see :agent john :patient fido :tense past)

ok.

sem-interpret>john saw mary

syntax: (root

(s (np (np-pro (name john)))

(vp (v+args (v2+tns saw) (np (np-pro (name mary)))))))

semantics: (see :agent john :patient mary :tense past)

ok.

sem-interpret> who saw fido

syntax: (root

(q+wh (np+wh (pronp+wh who))

(vp (v+args (v2+tns saw) (np (np-pro (name fido)))))))

semantics: wh-question ?who (see :agent ?who :patient fido :tense past)

john
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sem-interpret> who did john see

syntax: (root

(q+wh (np+wh (pronp+wh who))

(q/np (aux%do%modal (aux%do+tns did))

(np (np-pro (name john)))

(vbar-tns/np (v2-tns see) (np/np)))))

semantics: wh-question ?who (see :agent john :patient ?who :tense past)

fido and mary

sem-interpret>who gave mary fido

syntax: (root

(q+wh (np+wh (pronp+wh who))

(vp (v+args (v3+tns gave) (np (np-pro (name mary)))

(np (np-pro (name fido)))))))

semantics: wh-question ?who (give :agent ?who :patient fido :beneficiary mary :tense past)

john

sem-interpret>who gave john fido

syntax: (root

(q+wh (np+wh (pronp+wh who))

(vp (v+args (v3+tns gave) (np (np-pro (name john)))

(np (np-pro (name fido)))))))

semantics: wh-question ?who (give :agent ?who :patient fido :beneficiary john :tense past)

i don’t know.

sem-interpret>who gave fido to mary

syntax: (root

(q+wh (np+wh (pronp+wh who))

(vp (v+args (v3+tns gave) (np (np-pro (name fido)))

(pp+dat (p+to to) (np (np-pro (name mary))))))))

semantics: wh-question ?who (give :agent ?who :patient fido :beneficiary mary :tense past)

john
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sem-interpret>who did john give fido to

syntax: (root

(q+wh (np+wh (pronp+wh who))

(q/np (aux%do%modal (aux%do+tns did))

(np (np-pro (name john)))

(vbar-tns/np (v3-tns give) (np (np-pro (name fido)))

(pp+dat/np (p+to to) (np/np))))))

semantics: wh-question ?who (give :agent john :patient fido :beneficiary ?who :tense past)

mary

sem-interpret>>who did john give to mary

syntax: (root

(q+wh (np+wh (pronp+wh who))

(q/np (aux%do%modal (aux%do+tns did))

(np (np-pro (name john)))

(vbar-tns/np (v3-tns give) (np/np) (pp+dat (p+to to)

(np (np-pro (name mary))))))))

semantics: wh-question ?who (give :agent john :patient ?who :beneficiary mary :tense past)

fido

sem-interpret>who kissed fido

syntax: (root 
(q+wh (np+wh (pronp+wh who)) 
(vp (v+args (v2+tns kissed) (np (np-pro (name fido))))))) 

semantics: wh-question ?who (kiss :agent ?who :patient fido :tense past)

somebody

sem-interpret>who did mary kiss

syntax: (root

(q+wh (np+wh (pronp+wh who))

(q/np (aux%do%modal (aux%do+tns did))

(np (np-pro (name mary))) (vbar-tns/np (v2-tns kiss) (np/np)))))

semantics: wh-question ?who (kiss :agent mary :patient ?who :tense past)

john
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sem-interpret>who was kissed by mary

syntax: (root

(q+wh (np+wh (pronp+wh who))

(vp (aux%be+tns was) (v+passp (v2+passp kissed)

(pp+agby (p by) (np (np-pro (name mary))))))))

semantics: wh-question ?who (kiss :agent mary :patient ?who :tense past :type passive)

john

sem-interpret>did somebody kiss fido

syntax: (root

(q-wh (aux%do%modal (aux%do+tns did))

(np (np-pro (name somebody)))

(vbar-tns (v2-tns kiss) (np (np-pro (name fido))))))

semantics: yes/no-question (kiss :agent somebody :patient john :tense past)

yes.

4 The semantic interpreter

In this section we describe the format for semantic interpretation rules and how the interpreter actually
does its job. It is important to understand this material in order to add new rules.

Recall first that the job of semantic interpretation is to build a thematic or event representation,
a frame, of the sentence. The frame can be used to access a database, either in the form of a fact or
a query . A fact will look something like this, where the first item in the list corresponds to the main
predicate of the sentence, and the remaining items are pairs of thematic roles/attributes paired with
values; the structures here may be recursive. The thematic representation is primitive, but expandable;
it includes the usual notions of AGENT, PATIENT (affected object), BENEFICIARY (recipient of
object), LOCATIVE, MOOD, TYPE, etc.; see the new-words.lisp file for more details.

A fact is simply stored in the database, and this is the result of semantic interpretation in this case.
For instance, from John saw Mary we would get the following interpretation or fact to be added to the
database:

(see :agent john :patient mary :tense past)

A query is either a Yes/No question or a WH-question. If it’s a Yes/No question, we simply wrap
a procedure called y/n-question around the fact returned by the remainder of the sentence; this
procedure simply queries the database about the fact asserted in the rest of the sentence. For example,
Did John see Mary would simply query the database about the same fact as asserted above (adding
the :tense marker via the word did).

For a wh-question, we wrap a procedure called wh-question around the the pieces of the resulting
frame. This procedure takes two arguments: a wh-variable, and a frame with that wh-variable filling
the place of the wh-element that is questioned. Here’s an example from the test sentences, where who
is the questioned item:
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sem-interpret>who kissed fido

syntax: (root

(q+wh (np+wh (pronp+wh who))

(vp (v+args (v2+tns kissed) (np (np-pro (name fido)))))))

semantics: wh-question ?who (kiss :agent ?who :patient fido :tense past)

The matcher is smart enough not to care about extraneous details in answering queries. For example,
if given the query,

(chase :agent mary :patient ?who :tense past)

then this will match against a previously stored event that includes a :location value. You shouldn’t
have to alter any of this machinery.

We shall see how this is all put together shortly. First however we describe the format for grammar
rule and dictionary entries.

Rule formats. This lab replaces each syntactic and vocabulary rule with a pair of (syntactic, se-
mantic) or (vocabulary, semantic) rules. The first element of each pair has the same format as in lab
2, while the second element is a lambda function, i.e., a procedure that will get invoked to determine
the meaning associated with the lefthand side of the rule. Syntactic rules are added via the procedure
add-rule-sem, one for each phrase structure rule; while vocabulary rules are added via the procedure
add-word-semantics.

Here are some examples. Let us look at a rule to process a simple phrase structure rule, SrightarrowNP VP.
The format is simple. We first include the phrase structure expansion just as in lab 2, and follow it
with a lambda procedure whose arguments include just the two phrase structure nodes mentioned on
the righthand side of the rule. The system automatically uses the single procedure add-rule-sem to
add both a syntactic context-free rule and an associated semantic interpretation rule to the system, one
at a time. (Thus one does not add in a whole list of syntactic rules at a time, as in lab 2.)

Note that this format automatically follows the first two principles mentioned earlier: the rule-to-
rule hypothesis (for each syntactic rule there is a corresponding rule of semantic interpretation) and
compositionality (the meaning of a phrase like S is purely a function of the meaning of its parts NP
and VP).

People will note that this lambda procedure simply says to call the procedure named vp (whose
value or “meaning” will be determined “from below”, that is, from the semantic Interpretation of the
VP node) using the argument np (whose meaning will again be determined from semantic interpretation
further down the tree subsuming NP). In other words, to find the interpretation of the S, we call the
procedure VP using as an argument the subject NP. These two values will be supplied by the (recursive)
semantic interpretation of the NP and VP nodes.

(add-rule-sem ’(s ==> np vp)

’(lambda (np vp)

(funcall vp np)))

To finish off the description of rule formats, at the very bottom individual words must also contain some
paired semantic “value” (in fact, words with multiple meanings could have more than one semantic
value). In general words create thematic frames or add entries to an existing frame. For individual
names, this is easy: the proper set to return is just the individual label itself (thus fixing a pun between
the name of the token John and its semantic value in the database). Thus the first two components
of add-word-semantics looks just as in lab 2, listing the word and its syntactic category. The third
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component is its paired semantic value. Words that are to be ignored in the semantics (but play some
syntactic role) can just be given the identity function as their semantic value:

(add-word-semantics ’John ’name ’John)

(add-word-semantics ’that ’*that ’(lambda ()))

Multiple entries are permitted, as before, as well as multiple “meanings.”
Verbs have more complicated semantic entries. For instance, did requires an associated procedure

that will add to the frame already constructed; we saw that this was necessary for a yes-no question,
for example. Here is the relevant lexical entry. It has an associated lambda procedure that takes as its
sole argument the frame constructed to the right of did (associated with either an S or a VP node) and
adds a tense marker to that frame:

(add-word-semantics ’did ’aux%do+tns

’(lambda (verb-frame)

(append verb-frame ’(:tense past))))

You will have to add new entries of both kinds, with both syntax to both the words and rules files. A
few macros have been supplied to make adding new verb and noun entries easier (add-v1, add-v2,
add-noun).

How it all fits together

The overall design of the interpreter is to walk recursively down a completed phrase structure tree via
the procedure phrase-semantics, pasting together the meanings of a whole phrase out of the meanings
of its parts. At each step, we call either rule-semantics (if the node is a phrase) or word-semantics
(if the item is a leaf node). Of course, we must actually execute the procedures attached to each node;
this is done by the procedure rule-apply. Thus the entire system is analogous to Lisp’s eval and
apply; in general, rule-apply must be called once for each branching rule in the phrase structure tree.

Let’s see how this all fits together in a simple example. In general, such a system will dive all the
way down to the leaves of a tree and then glue the required meanings together via composed lambda
procedures on the way back out again. (A full trace of this example is given immediately below; here
we’ll go through things step by step.) In an actual declarative sentence example, say, John saw Mary ,
the parser first produces the phrase structure,

(ROOT
(S (NP (NP-PRO (NAME JOHN)))

(VP (V+ARGS (V2+TNS SAW)
(NP (NP-PRO (NAME MARY)))))))

The semantic interpreter now calls its main routine, phrase-semantics, on this tree, recursively travers-
ing it depth-first.

The topmost ROOT node will have an associated lambda procedure that simply calls the function
process-sentence:

(add-rule-sem ’(root ==> s)
’(lambda (s)

(process-sentence s)))

Thus, in the end this rule will take this lambda form, plus whatever is returned by the semantic
interpretation of S, namely a frame, as an argument. Using rule-apply, the system will put in the
semantic interpretation of S as the value of s—the argument to process-sentence. This will simply
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add the frame as a fact to the database. (All process-sentence does is call a procedure db-add with
the frame as its argument, which in turn just glues the fact on the front of the database.)

(lambda (s) (process-sentence s)
’(see :agent john :patient mary :tense past))

So how does S get its interpretation (a frame)? We saw above that the Interpretation of S is just
the result of calling VP with an argument that’s the subject NP:

(lambda (np vp)
(funcall vp np))

This procedure needs two values: one for the VP and one for the NP. These two values are filled in from
below, and substituted via the evaluation done by rule-apply. Let’s see where the values come from.

The Subject NP is built syntactically as,

(np (np-pro (name john)))

If we look at the three rules for these items, NP, NP-PRO, and NAME, we find:

(add-rule-sem ’(np ==> np-pro) #’identity)

(add-rule-sem ’(np-pro ==> name) #’identity)

(add-word-semantics ’John ’name ’John)

So the calls to phrase-semantics here just lead to the composition of two identity functions followed
by the constant John, i.e., just the constant John. This is confirmed by the trace:

| 3 Enter PHRASE-SEMANTICS (NP (NP-PRO (NAME JOHN))) 
| | 4 Enter RULE-SEMANTICS NP (NP-PRO) 
| | 4 Exit RULE-SEMANTICS #<Compiled-Function IDENTITY 17EBFF> 
| | 4 Enter PHRASE-SEMANTICS (NP-PRO (NAME JOHN)) 
| | 5 Enter RULE-SEMANTICS NP-PRO (NAME)

| | 5 Exit RULE-SEMANTICS #<Compiled-Function IDENTITY 17EBFF>

| | 5 Enter PHRASE-SEMANTICS (NAME JOHN)

| | | 6 Enter WORD-SEMANTICS JOHN NAME

| | | 6 Exit WORD-SEMANTICS JOHN

| | 5 Exit PHRASE-SEMANTICS JOHN

| | 4 Exit PHRASE-SEMANTICS JOHN

| 3 Exit PHRASE-SEMANTICS JOHN

The more interesting part is the semantic interpretation of the VP node. It is the key to understanding
the Montagovian style of doing semantic interpretation.

Here is the syntactic rule associated with the VP expansion:

(vp ==> v+args)

Here is the semantic lambda procedure associated with the VP rule:

(lambda (v+args)
‘(lambda (subj)

(funcall ,v+args subj)))
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Note that this is a procedure that itself returns a procedure—namely, that procedure object which takes
one argument, the (semantic value of) the Subject, and calls the function produced by V+args on it.
(Aside for novices: the comma , before v+args ensures that it is the value of v+args that is used.)
Note that the actual semantic value for subject will be duly supplied higher up when we carry out the
funcall of vp on np. This is typical of the procedures associated with VPs, PPs, AUXiliary nodes,
and so forth in Montagovian semantics. For example, the semantics of the preposition in is a function
tha takes as input a PP-complement (usually an NP) and returns a function that takes as input a
thematic/event frame and adds the appropriate feature to that frame. (It’s all part of the Montagovian
cuisine: curried lambdas, or should we say, digested lambda’s?)

Pasting together what we have so far then, since the semantic value of VP was funcalled with the
semantic value of NP, we have this:

(lambda (s) (process-sentence s)
(lambda (subj) (funcall <lambda procedure produced by v+args> subj)

’John))

Of course, this naturally leads to the question of what the procedure v+args should look like. You
should be able to guess: for each verb subcategory, it constructs a lambda procedure which is a function
of the verb and its arguments (excluding the subject); this lambda procedure in turn constructs the
basic thematic frame whose values are filled in by the subject and the arguments to the verb. So for
example, for see we need this syntactic rule:

(v+args ==> v2+tns np)

along with this semantic rule:

(lambda (v2+tns np)
‘(lambda (subj)

(funcall ,v2+tns subj ’,np)))

Note what this lambda form says: it expects two arguments to follow, (1) the semantic value of v2+tns
and (2) the semantic value of an np (the object np). It returns a procedure with one argument as its
value, and the values of v2+tns and np plugged in.

Remember that the value of subj will be filled in by lambda-substitution; however, the value of the
direct object argument to the verb must be “passed up” as the value associated with the object NP
node (that’s why we’ve written the inner lambda using the ’, notation, which will insert the semantic
value of the object NP into the funcall—it ought to be Mary in our example). What about the value
of v2+tns? That is the verb subcategory corresponding to see, and so, at bottom, the meaning of this
single word is just this, where the two arguments of agent and patient are filled in when the funcall
is done by the subj and semantic value of the object NP. But this value will just be the constant Mary
(analogously to how John was computed); we omit these steps.

(lambda (agent patient)
‘(see :agent ,agent :patient ,patient :tense past))

Note how this meshes with the v+args semantic rule, which said that the first argument to v2+tns
should fill the agent role and is the subject, while the second argument is the np direct object and
should come immediately following v2+tns (as it does, since the NP follows). The subject fills the
:agent thematic role and the direct object NP fills the :patient role.

Taking stock of where we are so far then, when we substitute for the v2+tns and np components we
get the semantic value produced by v+args, or effectively, the entire S form (omitting some details):
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(lambda (subj)
(funcall

(lambda (subj) ; this is the value of VP
(funcall (lambda (agent patient)

‘(see :agent ,agent :patient ,patient :tense past))
subj ; agent argument supplied by lambda

application
’Mary)) ; patient argument (semantic value of

object np)
subj))

applied to the subject argument ’John. This gives us the desired frame to be used as an argument to
process-sentence.
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For the curious, the entire trace using the supplied procedure trace-semantics looks like this:

> (trace-semantics) 
(WORD-SEMANTICS) 
> (top-level) 
Shall I clear the database? (Y or N) y 
>john saw mary 
1 Enter PHRASE-SEMANTICS (ROOT (S (NP #) (VP #))) 
| 2 Enter RULE-SEMANTICS ROOT (S) 
| 2 Exit RULE-SEMANTICS #<Interpreted-Function 

(LAMBDA (S) (PROCESS-SENTENCE S)) 6C7DBF>

| 2 Enter PHRASE-SEMANTICS (S (NP (NP-PRO #)) (VP (V+ARGS # #)))

| 3 Enter RULE-SEMANTICS S (NP VP)

| 3 Exit RULE-SEMANTICS #<Interpreted-Function

(LAMBDA (NP VP) (FUNCALL VP NP)) 6C802F>

| 3 Enter PHRASE-SEMANTICS (NP (NP-PRO (NAME JOHN)))

| | 4 Enter RULE-SEMANTICS NP (NP-PRO)

| | 4 Exit RULE-SEMANTICS #<Compiled-Function IDENTITY 17EBFF>

| | 4 Enter PHRASE-SEMANTICS (NP-PRO (NAME JOHN))

| | 5 Enter RULE-SEMANTICS NP-PRO (NAME)

| | 5 Exit RULE-SEMANTICS #<Compiled-Function IDENTITY 17EBFF>

| | 5 Enter PHRASE-SEMANTICS (NAME JOHN)

| | | 6 Enter WORD-SEMANTICS JOHN NAME

| | | 6 Exit WORD-SEMANTICS JOHN

| | 5 Exit PHRASE-SEMANTICS JOHN

| | 4 Exit PHRASE-SEMANTICS JOHN

| 3 Exit PHRASE-SEMANTICS JOHN

| 3 Enter PHRASE-SEMANTICS (VP (V+ARGS (V2+TNS SAW) (NP #)))

| | 4 Enter RULE-SEMANTICS VP (V+ARGS)

| | 4 Exit RULE-SEMANTICS #<Interpreted-Function

(LAMBDA (V+ARGS) (SYSTEM:BQ-LIST (QUOTE LAMBDA)

(QUOTE #) (SYSTEM:BQ-LIST* # V+ARGS #)))

6C8B17>

| | 4 Enter PHRASE-SEMANTICS (V+ARGS (V2+TNS SAW) (NP (NP-PRO #)))

| | 5 Enter RULE-SEMANTICS V+ARGS (V2+TNS NP)

| | 5 Exit RULE-SEMANTICS #<Interpreted-Function

(LAMBDA (V2+TNS NP) (SYSTEM:BQ-LIST (QUOTE LAMBDA)

(QUOTE #) (SYSTEM:BQ-LIST # V2+TNS

# #))) 6C8DE7>

| | 5 Enter PHRASE-SEMANTICS (V2+TNS SAW)

| | | 6 Enter WORD-SEMANTICS SAW V2+TNS

| | | 6 Exit WORD-SEMANTICS #<Interpreted-Function

(LAMBDA (AGENT PATIENT) (SYSTEM:BQ-LIST*

(QUOTE SEE) :AGENT AGENT :PATIENT PATIENT

(QUOTE #))) 6C90D7>

| | 5 Exit PHRASE-SEMANTICS #<Interpreted-Function

(LAMBDA (AGENT PATIENT) (SYSTEM:BQ-LIST*

(QUOTE SEE) :AGENT AGENT :PATIENT PATIENT

(QUOTE #))) 6C90D7>

| | 5 Enter PHRASE-SEMANTICS (NP (NP-PRO (NAME MARY)))

| | | 6 Enter RULE-SEMANTICS NP (NP-PRO)

| | | 6 Exit RULE-SEMANTICS #<Compiled-Function IDENTITY 17EBFF>

| | | 6 Enter PHRASE-SEMANTICS (NP-PRO (NAME MARY))

| | | 7 Enter RULE-SEMANTICS NP-PRO (NAME)

| | | 7 Exit RULE-SEMANTICS #<Compiled-Function IDENTITY 17EBFF>

| | | 7 Enter PHRASE-SEMANTICS (NAME MARY)
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| | | | 8 Enter WORD-SEMANTICS MARY NAME

| | | | 8 Exit WORD-SEMANTICS MARY

| | | 7 Exit PHRASE-SEMANTICS MARY

| | | 6 Exit PHRASE-SEMANTICS MARY

| | 5 Exit PHRASE-SEMANTICS MARY

| | 4 Exit PHRASE-SEMANTICS #<Interpreted-Function (LAMBDA (SUBJ)

(FUNCALL #<Interpreted-Function (LAMBDA (AGENT PATIENT)

(SYSTEM:BQ-LIST*

(QUOTE SEE) :AGENT AGENT :PATIENT PATIENT (QUOTE

#)))

6C90D7> SUBJ (QUOTE MARY))) 6C9F67>

| 3 Exit PHRASE-SEMANTICS #<Interpreted-Function

(LAMBDA (SUBJ) (FUNCALL #<Interpreted-Function

(LAMBDA (SUBJ) (FUNCALL

#<Interpreted-Function

(LAMBDA (AGENT PATIENT)

(SYSTEM:BQ-LIST*

(QUOTE SEE) :AGENT AGENT :PATIENT

PATIENT

(QUOTE #))) 6C90D7> SUBJ

(QUOTE MARY))) 6C9F67>

SUBJ)) 6CA2AF>

| 2 Exit PHRASE-SEMANTICS (SEE :AGENT JOHN :PATIENT MARY :TENSE PAST) 
OK. 
1 Exit PHRASE-SEMANTICS NIL 
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Some additional helpful tips

Here are some other points to keep in mind when using the system.

• The procedure list-semantics can be used to print out in alphabetized, readable form the paired
syntactic/semantic rules and the dictionary categories. An excerpt:

athena> (list-semantics)

(NP ==> NP-PRO) : IDENTITY

(S ==> NP VP) : (LAMBDA (S) (FUNCALL VP NP))

etc.

(A . DET) 
(AN . DET) 

etc. 
(YELLOW . A) 

• The tracing procedure trace-semantics just traces calls to phrase-semantics, rule-semantics,
and word-semantics.

• The system can handle modals, adjectives, embedded questions, and other syntactic constructs
not otherwise described here—take a look and find out for yourself!

• In order to put new syntactic rules into the system one has to call init-syntax all over again,
because the entire Earley parsing table must be rebuilt. However , if one is changing only the
semantic part of a rule, then one need only re-evaluate that single rule, because that lambda form
will be placed into a lookup table immediately replacing the old version. Thus the semantics can
be debugged incrementally if the syntax is unchanged.

• The routines for generating output from the query/facts are pretty simple-minded.


