6.863J Natural Language Processing Lecture 14: Word semantics I

Robert C. Berwick

The Menu Bar

- Administrivia:
- Lab 4 due April 9
- Agenda:
- Lexical semantics: the meanings of words: how hard can it be?
- Tense and time (if there's time)

Word sense

- The benevolent alien race that visits earth.
- Their great book is entitled How to Serve Humans

Predicate-arguments to thematic roles

- Use linking rules
- These say whether, e.g, Subject is the agent...
- Is there a theory for this?
- How do we build this knowledge?

Predicate-argument structures for lose

lose1 (Agent: animate, Patient: physical-object)
lose2 (Agent: animate,

Patient. competition)
Agent <=> subj
Patient <=> obj

Machine Translation Lexical Choice- Word Sense Disambiguation

Iraq lost the battle.
Ilakuka centwey ciessta.
[Iraq] [battle] [lost].

John lost his computer.
John-i computer-lul ilepelyessta.
[John] [computer] [misplaced].

Word sense disambiguation with Source Language Semantic Class Constraints (co-occurrence patterns)

lose1(Agent, Patient: competition) <=> ciessta
lose2 (Agent, Patient: physobj) <=> ilepelyessta

Is there enough data?

- Break

Levin classes (3100 verbs)

- 47 top level classes, 150 second and third level
- Based on pairs of syntactic frames.

John broke the jar. / Jars break easily./ The jar broke. John cut the bread. / Bread cuts easily. / *The bread cut. John hit the wall. / *Walls hit easily. / *The wall hit.

- Reflect underlying semantic components contact, directed motion, exertion of force, change of state
- Synonyms, syntactic patterns, relations

Another alternation example

- Another example: Causative/inchoative
- The window broke
- John broke the window
- The rabbit suddenly appeared
- *The magician appeared the rabbit
- Benefactive:
- Sue carved a toy out of wood for Hansel
- Sue carved hansel a toy out of wood
- Sue carved some wood into a toy for Hansel
- *Sue carved Hansel some wood into a toy
- Middle formation:
- The whale frightens easily
- *The whale sees easily

Alternations..

- Sue broke the vase/ The vase broke (change-of-state)
- The vase broke easily
- Conative: *Sue broke at the vase
- Bill cut the bread/ *The bread cut (change-of-state, no "telic" endpoint)
- The bread cut easily
- Bill cut at the bread
- Mary touched the cat / *The cat touched
- *The cat touched easily (no change-of-state)
- *Mary touched at the cat
- Joe kicked the tire / *The tire kicked
- *The tire kicked easily
- Joe kicked at the tire
- Alternations can be lang-specific: "break" is a causative/inchoative in English, but not Italian.

Lexical Gaps: English to Chinese

break

smash
shatter
snap
?
da po - irregular pieces
da sui - small pieces
pie duan -line
segments

Intersective Levin classes

So we want...

Thematic Roles

- E w, x, y, z Giving ($x)^{\wedge}$ Giver $(w, x)^{\wedge}$ Givee(z, x) \wedge Given (y, x)
- E w,x,z Breaking (x) ^ Breaker $(w, x)^{\wedge}$ Broken(z,x)
- A set of roles:
- agent, experiencer, force, theme, result, content, instrument, beneficiary, source, goal,...
The dog ate the cheeseburger.
What is cheeseburger?
The sniper shot his victim with a rifle.
What is rifle?

Schank's Conceptual Dependency

- Eleven predicate primitives represent all predicates
- Objects decomposed into primitive categories and modifiers
- But few predicates result in very complex representations of simple things

Ex,y Atrans(x) ^ Actor ($\mathrm{x}, \mathrm{John}$) ^

Object(x, Book) ^ To(x,Mary) ^ Ptrans $(y) \wedge$ Actor(y,John) ^ Object(y,Book) ^ To(y,Mary) John caused Mary to die vs. John killed Mary

Selection via sortal hierarchy

- John ate a clam
- They served clams
- "logical" form: $\exists \mathrm{x}, \mathrm{y}, \mathrm{e}$ [eat(e) \& eater(e,y) \& eaten (e, x) \& john(y$)$ \& clam (x) \& past(e)]
- So...

Sortal hierarchy ('ontology')

Selection via sortal hierarchy

1. eater([Eating],[Being])
2. eat([Eating])
3. eaten([Eating],[Food])
4. server([Serving],[Being])
5. \quad serve $($ (Serving])
6. served([Serving],[Food])
7. john([Person])
8. they([Person])
9. mussel ${ }_{1}([$ Food $])$
10. mussel $_{2}([$ Creature $])$

But...

- Which airlines serve Denver?
- You ate glass on an empty stomach
- Metonomy: What airlines fly to Boston?

But how can we/computer learn this?

- Two parts: pred-arg linking to thematic roles - which verbs do what
- Selectional restrictions

pour vs. fill

- Different linking entails semantic difference when in Object position, the Goal seems "affected" in a way not so in the PP
- Fill: Cause X to become full of Y by means of causing Y to be in X
- Pour: Cause X to go in a downward stream into Y
- Fill has two events: a state change (the glass) and a location change (the water)
- Pour has one event: location change
- The Main-change argument gets Old-Info structure and main event status. Main event of Fill: state change of glass

KEY HUMAN COMPETENCE:

One-shot integration of syntax \& semantics

The Problem of Ambiguity

Possible Hypotheses

- Rabbit (whole object)
- Animal (superordinate)
- Flopsie (individual)
- Furry (property)
- Ear (part)
- Walk by (activity)
- Undetached rabbit parts

Two Bootstrapping Proposals

- Children use syntactic cues to verb meaning (Gleitman 1990)
- Children use (verb) meaning to figure out how its arguments are realized in the syntax of the language (Pinker 1989)

Semantic Bootstrapping

(Pinker 1984)

Semantic Bootstrapping involves the pairing of a situational context with some syntactic pattern.

- Kids learn syntax by first learning the semantic argument structure of the verb.
- SWIM = one participant (the "swimmer")
- EAT = two participants ("eater", "eatee")
- TAKE = two/three participants ("taker", "takee", and "person taken from"...)

Gleitman: Not So Fast, Pinker...

... more than just real-world observation...

Syntactic Bootstrapping

(Landau and Gleitman 1986, Naigles 1990)
Syntactic frames provide evidence for meaning:

Verbs Classes Grouped by Cause Feature

H_{i}	Verb Class
$H_{1} \quad$ Externally Caused (touch, load)	
\quad F1: He touched the glass.	
\quad F0: The glass touched.	
$H_{0} \quad$ Internally Caused (laugh, glimmer)	
\quad * F1: He laughed the child.	
F0: He laughed.	

H_{*} Externally Causable (open, break) F1: He opened the door.
FO: The door opened.

Hypothesis space \mathbf{H}
Evidence x in $\mathrm{X}=\{\mathbf{0}, \mathbf{1}\}$
$\mathbf{H i}$ in \mathbf{H}

One-shot learning

within a Bayesian framework.

Learning Value of Verbs Cause Feature

Bayesian Learning at the SyntaxSemantics Interface

Syntactic Evidence / X is gorping Y into Z / / X is pilking Z with $\mathrm{Y} /$ /Look! jebbing!/

Semantic Evidence Person pours water into a glass, filling it Person pours water into a glass, filling it Person pours water into a glass, filling it

Linguistic Theory
$H=\left\{H_{1}, H_{2}, \ldots\right\}$
Prior: $p\left(H_{i}\right)$
Likelihood $p\left(x / H_{i}\right)$

How to get 'real semantics' in?

Verb meanings are logic programs (LPs):

General:
One args x :
Two args x, y : (if cause(e)=1)

Verb Logic Program /lower/ 1 1*101** 11* /raise/ 11*011** 11^{*} /rise/ 0 1* $^{*} 01^{* * *}$ /fall/ $01^{*} 10^{* * *}$

cause(e)

move(x), rotate (x), move-dn(x), move-up(x) supported (x), liquid(x), container(x) $\operatorname{contact}(\mathrm{x}, \mathrm{y}), \operatorname{support}(\mathrm{x}, \mathrm{y}), \operatorname{attach}(\mathrm{x}, \mathrm{y})$

Hypothesis space H:All LPs
Evidence X : Bit Vector Examples (e.g. 11010100 110)

Learning Semantic Features

Semantic "Theory": (3 bits)
Hypothesis space H: 27 LPs
${ }_{0}^{\mathbf{q}}$ H_{i}
$0 \quad 000,001,010,011$ 100, 101, 110, 111
$100 *, 01 *, 10^{*}, 11^{*}$
$0 * 0,0^{*} 1,1^{*} 0,1^{*} 1$
*00, *01, *10, *11
2
3
Priors $p\left(H_{i}\right)=1 / 27$

Likelihood $p\left(x \mid H_{i}\right)=\left\{2^{-\mathrm{q}}\right.$ if x in $\boldsymbol{H}_{\boldsymbol{i}}$
Acquired Semantic Knowledge

$$
\begin{aligned}
p\left(x=000 \mid H_{000}\right) & =1 \\
p\left(x=000 \mid H_{00^{*}}\right) & =.5 \\
p\left(x=000 \mid H_{0^{* *}}\right) & =.25 \\
p\left(x=000 \mid H_{* * *}\right) & =.125
\end{aligned}
$$

Lexicon: $p\left(H_{000} \mid X\right) p\left(H_{00^{*}} / X\right) p\left(H_{0^{* *}} \mid X\right) p\left(H_{* * *} / X\right)$
/glip/ . 30 . 15 . 07 . 03
lgorp/ . 00 . 64 . 16 . 04
/seb/ . 70 . 09 . 01 . 001
6.863/9.611 ${ }^{\text {meetfure } 14 \text { Sp03 }}$. 00 . 00 1.0

But... what are the possible arguments?

- Predicate-arguments can be complicated...can we crank it out?
- Argument structure is syntax
- There are no specialized mechanisms of 'thematic role assignment'
- Everything is really predication

Hale-Keyser: arguments are syntax

The basic form

6.863J/9.611J Lecture $14 \mathrm{Sp03}$

H \& K: The framework

- There are only three places a verb argument can come from
- The complement or specifier of a "basic" lexical item
- An external "addition"
- As for "basic lexical items" there are four types: N, V, A, P
- Why so few thematic roles? Because so few basic lexical items (entity/instance, event, state, relation)

N,V,A,P

- N takes no arguments
- V are predicational, and take one argument, a complement.
- P are relational, and take two arguments
- A are predicational, and take one argument, but require some help; thus an A is always the complement of a verb, which then projects for an external arg.

Hale-Keyser Incorporation

- 4 Fundamental Primitives Yield Different Argument Structures

HK Allows Us to Discard Thematic Roles

- Agent, Patient, Theme, Instrument, Goal, ... derived from positions in structural configurations.
- V-N:
- V-A
- V-P

What can N get us?

- Intransitive verbs:

Nouns cannot project arguments. A noun (run, laugh, play, cough, snore, burp) incorporates into the verb. An external argument is adjoined to v. Thus, rather than having cognate N and V copies in the lexicon, verbs are derived by syntax.

Unergatives vs. Simple Transitives

- Unergatives: no external agent The child laughed
- [NP [v[V+N (N)]]]
- No verbs like *The clown laughed the child / *The alfalfa sneezed the colt (The N complement to V has incorporated, where would the "object NP" reside?)
- [NP [V+N (N) NP?]]
- Simple transitive (non-creation) The clown made the child laugh
- [NP [v [NP [V+N (N)]]]]
- Extensions : get+A (I got drunk, I got Josh drunk)
- But not for get+N (I got the measles, *I got Josh the measles)

Explaining Gaps in the Lexicon

- *It cowed a calf, *It dusted the horses blind, *It machined the wine into bottles (cf. The cow had a calf, the dust made the horses blind, the machines put the wine into bottles)
- The above items would be the result of the external subject incorporating into the verb, which is ruled out by the syntax elsewhere (items raise \& incorporate up, but not down)
- If all "denominal" verbs are the result of incorporation of the complement to the V head, rather than unconstrained "category change", these non-verbs are predicted

V: Verbs of Creation:
 The simple case

- bake a cake, make trouble, build a house, have puppies
- V has a complement NP(=DP). External argument is projected and adjoined to v.

P gives put-type Verbs

- The P frame has a specifier and complement. The whole P -complex is a verb complement. An external argument is projected and adjoined.

P gives locatum-type verbs

- With a bare N as the PP complement, the N conflates with the P, which conflates with the V , giving saddled the horse, boxed the gift, roofed the house (all have P -meaning)

Picture

Implementation

(define-verb-class "PUT VERBS: put verbs (Section 9.1)"
"putting entity at some location (but not to or from)"
'(arrange immerse install lodge mount place position put set situate sling stash stow)
(list '((* the water put into a bowl))
'((+ he put the water into the bowl)
(vp ()
(v* (v put (feature CAUSE))
(pp (n the water)
(p^{*} (p into (feature MOVELOCATION)) (n a bowl)))))))

Argument Structure: The Moral

- No specialized mechanism of "thematic role assignment". Everything is predication.
- Do these mechanisms of derived verbs happen in the syntax with everything else, or "prior to lexical insertion", e.g. "in the lexicon"? What do you think? Should this distinction matter?

