6.863J Natural Language Processing
 Lecture 22: Language Learning, Part 2

Robert C. Berwick

The Menu Bar

- Administrivia:
- Project-p?
- Can we beat the Gold standard?
- Review of the framework
- Various stochastic extensions
- Modern learning theory \& sample size
- Gold results still hold!
- Learning by setting parameters: the triggering learning algorithm

The problem

- From finite data, induce infinite set
- How is this possible, given limited time \& computation?
- Children are not told grammar rules
- Ans: put constraints on class of possible grammars (or languages)

To review: the Gold framework

- Components:
- Target language $L_{g t}$ or L_{t} (with target grammar g_{t}), drawn from hypothesis family \mathbf{H}
- Data (input) sequences o and texts $t ; t_{n}$
- Learning algorithm (mapping) ^ ; output hypothesis after input $t_{n} A\left(t_{n}\right)$
- Distance metric d, hypotheses h
- Definition of learnability:

$$
d\left(g_{t}, h_{n}\right) \rightarrow_{n \rightarrow \infty} 0
$$

Framework for learning

1. Target Language $L_{t} \in \mathbf{L}$ is a target language drawn from a class of possible target languages \mathbf{L}
2. Example sentences $s_{i} \in L_{t}$ are drawn from the target language \& presented to learner.
3. Hypothesis Languages $h \in \mathbf{H}$ drawn from a class of possible hypothesis languages that child learners construct on the basis of exposure to the example sentences in the environment
4. Learning algorithm \mathbf{A} is a computable procedure by which languages from \mathbf{H} are selected given the examples

Some details

- Languages/grammars - alphabet Σ^{*}
- Example sentences
- Independent of order
- Or: Assume drawn from probability distribution μ (relative frequency of various kinds of sentences) eg, hear shorter sentences more often
- If $\mu \in L_{t}$, then the presentation consists of positive examples, O.W.,
- examples in both $L_{t} \& \Sigma^{*}-L_{t}$ (negative examples) ${ }_{L}$ I.e., all of Σ^{*} ("informant presentation")

Learning algorithms \& texts

- A is mapping from set of all finite data streams to hypotheses in \mathbf{H}
- Finite data stream of k examples $\left(s_{1}, s_{2}, \ldots, s_{k}\right)$
- Set of all data streams of length k,

$$
\mathbf{D}^{\mathrm{k}}=\left\{\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right) \mid \mathrm{s}_{\mathrm{i}} \in \Sigma^{*}\right\}=\left(\Sigma^{*}\right)^{\mathrm{k}}
$$

- Set of all finite data sequences $\mathbf{D}=\cup_{\mathrm{k}>0} \mathbf{D}^{\mathrm{k}}$ (enumerable), so:

A : D \rightarrow H

- Can consider \mathbf{A} to flip coins if need be

If learning by enumeration: The sequence of hypotheses after each sentence is $h 1, h 2, \ldots$,
Hypothesis after n sentences is h_{n}

ID in the limit - dfns

- Text t of language L is an infinite sequence of sentences of L with each sentence of L occurring at least once ("fair presentation")
- Text t_{n} is the first n sentences of t
- Learnability: Language L is learnable by algorithm \mathbf{A} if for each t of L if there exists a number m s.t. for all $n>m, \mathbf{A}\left(t_{n}\right)=L$
- More formally, fix distance metric d, a target grammar g_{t} and a text t for the target language. Learning algorithm A identifies (learns) g_{t} in the limit if

$$
d\left(\mathbf{A}\left(t_{k}\right), g_{t}\right) \rightarrow 0_{k \rightarrow \infty}
$$

Convergence in the limit

$d\left(g_{t}, h_{n}\right) \rightarrow_{n \rightarrow \infty} 0$

- This quantity is called generalization error
- Generalization error goes to 0 as \# of examples goes to infinity
- In statistical setting, this error is a random variable \& converges to 0 only in probabilistic sense (Valiant - PAC learning)

ع-learnability \& "locking sequence/data set"

Ball of radius ε
Locking sequence:
If (finite) sequence 1_{ε} gets within ε of target \& then it stays there

Locking sequence theorem

- Thm 1 (Blum \& Blum, 1975, ε version) If a identifies a target grammar g in the limit, then, for every $\varepsilon>0, \exists$ a locking sequence $l_{e} \in \mathrm{o}$ s.t.
(i) $l_{e} \subseteq L_{g}$ (ii) $d\left(\mathrm{~A}\left(l_{e}\right), g\right)<\varepsilon \&$
(iii) $d\left(\mathrm{~A}\left(l_{e}, \sigma\right), g\right)<\varepsilon, \forall \sigma \in \mathrm{D}, \sigma \subseteq L_{g}$
- Proof by contradiction. Suppose no such l_{e}

Proof...

- If no such l_{e}, then \exists some σ_{l} s.t.

$$
d\left(\mathrm{~A}\left(l \bullet \sigma_{l}, g\right) \geq \varepsilon\right.
$$

- Use this to construct a text q on which a will not identify the target L_{g}
- Evil daddy: every time guesses get ε close to the target, we'll tack on a piece of σ_{l} that pushes it outside that ε-ball - so, conjectures on q greater than ε infinitely often

The adversarial parent...

- Remember: $d\left(\right.$ A $\left(l \bullet \sigma_{l}, g\right) \geq \varepsilon$
- Easy to be evil: construct $r=s_{1}, s_{2}, \ldots, s_{n} \ldots$ for L_{g}
- Let $q_{1}=s_{l}$. If $d\left(\mathrm{~A}\left(q_{i}, g\right)<\varepsilon\right.$, then pick a $\sigma_{q i}$ and tack it onto the text sequence,

$$
q_{i+1}=q_{i} \sigma_{q i} s_{i+1}
$$

o.w. , d is already too large ($>\varepsilon$), so can leave q_{i+1} sequence as q_{i} followed by s_{i+1}

$$
q_{i+1}=q_{i} s_{i+1}
$$

Pinocchio sequence...

6.863J/9.611J Lecture 22 Sp03

Gold's theorem

- Suppose ${ }_{A}$ is able to identify the family ᄂ. Then it must identify the infinite language, $L_{\text {inf }}$.
- By Thm, a locking sequence exists, $\sigma_{\text {inf }}$
- Construct a finite language $L_{\sigma_{\text {inf }}}$ from this locking sequence to get locking sequence for $\mathrm{L}_{\text {oinf }}$ - a different language from $L_{\text {inf }}$
- A can't identify $\mathrm{L}_{\text {бinf }}$, a contradiction

Example of identification (learning) in the limit - whether TM halts or not

Dfn of learns: \exists some point m after which (i) algorithm a outputs correct answer; and (ii) no longer changes its answer.

The following a will work:
Given any Turing Machine M_{j}, at each time i, run the machine for i steps.
If after i steps, if M has not halted, output 0 (i.e., "NO"), o.w., output 1 (i.e, "Yes")
Suppose TM halts:
$\left.\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & \ldots & m & m+1\end{array}\right]$.

Suppose TM does not halt:

Exact learning seems too stringent

- Why should we have to speak perfect French forever?
- Can't we say "MacDonald's" once in a while?
- Or what about this:
- You say potato; I say pohtahto; You say potato; I say pohtahto;...

Summary of learnability given Gold

- With positive-only evidence, no interesting families of languages are learnable
- Even if given (sentence, meaning)
- Even if a stochastic grammar (mommy is talking via some distribution μ)
- BUT if learner knew what the distribution was, they could learn in this case - however, this is almost like knowing the language anyway

If a parent were to provide true negative evidence of the type specified by Gold, interactions would look like the Osbournes:

Child: me want more.
Father: ungrammatical.
Child: want more milk.
Father: ungrammatical.
Child: more milk !
Father: ungrammatical.
Child: cries
Father: ungrammatical

When is learnability possible?

- Strong constraints on distribution
- Finite number of languages/grammars
- Both positive and (lots of) negative evidence
- the negative evidence must also be 'fair' - in the sense of covering the distribution of possibilities (not just a few pinpricks here and there...)

Positive results from Gold

- Active learning: suppose learner can query membership of arbitrary elts of Σ^{*}
- Then DFAs learnably in poly time, but CFGs still unlearnable
- So, does enlarge learnability possibilities but arbitrary query power seems questionable

Relaxing the Gold framework constraints: toward the statistical framework

- Exact identification $\rightarrow \varepsilon$-identification
- Identification on all texts \rightarrow identification only on > 1- δ (so lose, say, 1% of the time)
- This is called a (ε, δ) framework

Statistical learning theory approach

- Removes most of the assumptions of the Gold framework -
- It does not ask for convergence to exactly the right language
- The learner receives positive and negative examples
- The learning process has to end after a certain number of examples
- Get bounds on the \# of examples sentences needed to converge with high probability
- Can also remove assumption of arbitrary resources: efficient (poly time) [Valiant/PAC]

Modern statistical learning: VC dimension \& Vapnik-Chervonenkis theorem $(1971,1991)$

- Distribution-free (no assumptions on the source distribution)
- No assumption about learning algorithm
- TWO key results:

1. Necessary \& sufficient conditions for learning to be possible at all ("capacity" of learning machinery)
2. Upper \& lower bounds on \# of examples needed

Statistical learning theory goes further - but same results

- Languages defined as before:

$$
1_{\mathrm{L}}(s)=1 \text { if } s \in L, 0 \text { o.w. (an 'indicator function') }
$$

- Examples provided by some distribution P on set of all sentences
- Distances between languages defined as well by the probability measure P
$d\left(L_{1}-L_{2}\right)=\Sigma_{\mathrm{S}}\left|1_{L 1}(s)-1_{L 2}(s)\right| P(s)$
This is a 'graded distance' - $L_{l}(P)$ topology

Learnability in statistical framework

Model:

- Examples drawn randomly, depending on P
- After l data pts, learner conjectures hypothesis h_{l} - note, this is now a random variable, because it depends on the randomly generated data
- Dfn: Learner's hypothesis h_{l} converges to the target $\left(1_{L}\right)$ with probability 1 , iff for every $\varepsilon>0$

$$
\operatorname{Prob}\left[d\left(h_{l}, 1_{L}\right)>\varepsilon\right] \rightarrow_{l \rightarrow \infty} 0
$$

P is not known to the learner except through the draws
(What about how h is chosen? We might want to minimize error from target...)
6.863J/9.611J Lecture 22 Sp03

Standard P(robably) A(approximately) C(orrect) formulation (PAC learning)

- If h_{l} converges to the target 1_{L} in a weak sense, then for every $\varepsilon>0$ there exists an $m(\varepsilon, \delta)$ s.t. for all $l>m(\varepsilon, \delta)$

$$
\operatorname{Prob}\left[d\left(h_{l}, 1_{L}\right)>\varepsilon\right]<\delta
$$

With high probability (> 1- δ) the learner's hypothesis is approximately close (within ε in this norm) to the target language m is the \# of samples the learner must draw $m(\varepsilon, \delta)$ is the sample complexity of learning

Vapnik- Chervonenkis result

- Gets lower \& upper bounds on $m(\varepsilon, \delta)$
- Bounds depend on ε, δ and a measure of the "capacity" of the hypothesis space $н$ called VC-dimension, d

$$
m(\varepsilon, \delta)>f(\varepsilon, \delta, d)
$$

- What's this d ??
- Note: distribution free!

VC dimension,"d"

- Measures how much info we can pack into a set of hypotheses, in terms of its discriminability its learning capacity or flexibility
- Combinatorial complexity
- Defined as the largest d s.t. there exists a set of d points that $н$ can shatter, and ∞ otherwise
- Key result: \llcorner is learnable iff it has finite VC dimension (d finite)
- Also gives lower bound on \# of examples needed
- Defined in terms of "shattering"

Shattering

- Suppose we have a set of points $x_{1}, x_{2}, \ldots, x_{n}$
- If for every different way of partitioning the set of n points into two classes (labeled $0 \& 1$), a function in ${ }_{\boldsymbol{H}}$ is able to implement the partition (the function will be different for every different partition) we say that the set of points is shattered by -
- This says "how rich" or "how powerful" ${ }_{\mathrm{н}}$ is its representational or informational capacity for learning

Shattering - alternative 'view'

- н can shatter a set of points iff for every possible training set, there are some way to twiddle the h 's such that the training error is 0

Example 1

- Suppose ${ }_{\boldsymbol{н}}$ is the class of linear separators in 2-D (half-plane slices)
- We have 3 points. With +/- (or 0/1) labels, there are 8 partitions (in general: with m pts, 2^{m} partitions)
- Then any partition of 3 points in a plane can be separated by a half-plane:

Half-planes can shatter any 3 point partition in 2-D: white $=0$; shaded $=1$ (there are 8 labelings)

BUT NOT...
6.863J/9.611J Lecture 22 Sp03

But not 4 points - this labeling can't be done by a half-plane:
...so, VC dimension for ${ }_{\mathrm{H}}=$ half-planes is 3

6.863J/9.611J Lecture 22 Sp03

Another case: class $\boldsymbol{н}$ is circles (of a restricted sort)

$H=f(x, b)=\operatorname{sign}(x \cdot x-b)$

Can this f shatter the following points?

Is this $\boldsymbol{н}$ powerful enough to separate 2 points?

6.863J/9.611J Lecture 22 Sp03

This $\boldsymbol{r}_{\text {c }}$ can separate one point...

VC dimension intuitions

- How many distinctions hypothesis can exhibit
- \# of effective degrees of freedom
- Maximum \# of points for which ${ }_{\boldsymbol{r}}$ is unbiased

Main VC result \& learning

- If ${ }_{\boldsymbol{H}}$ has VC-dimension d, then $m(\varepsilon, \delta)$, the \# of samples required to guarantee learning within ε of the target language, $1-\delta$ of the time, is greater than:

$$
\log (2)\left(\frac{d}{4} \log \left(\frac{3}{2}\right)+\log \left(\frac{1}{8 \delta}\right)\right)
$$

This implies

- Finite VC dimension of ${ }_{\boldsymbol{H}}$ is necessary for (potential) learnability!
- This is true no matter what the distribution is
- This is true no matter what the learning algorithm is
- This is true even for positive and negative examples

Applying VC dimension to language learning

- For $\boldsymbol{r}_{\text {(}}^{\text {(or }}$) to be learnable, it must have finite VC dimension
- So what about some familiar classes?
- Let's start with the class of all finite languages (each L generates only sentences less than a certain length)

VC dimension of finite languages

- is infinite! So the family of finite languages is not learnable (in (ε, δ) or PAC learning terms)!
- Why? the set of finite languages is infinite - the \# of states can grow larger and larger as we grow the fsa's for them
- It is the \# of states that distinguish between different equivalence classes of symbols
- This ability to partition can grow without bound - so, for every set of d points one can partition - shatter - there's another of size $d+1$ one can also shatter - just add one more state

Gulp!

- If class of all finite languages is not PAC learnable, then neither are:
- fsa's, cfg's,...- pick your favorite general set of languages
- What's a mother to do?
- Well: posit a priori restrictions - or make the class ${ }_{\boldsymbol{r}}$ finite in some way

FSAs with n states

- DO have finite VC dimension...
- So, as before, they are learnable
- More precisely: their VC dimension is $O(n \log n), n=\#$ states

Lower bound for learning

- If ${ }_{\mathrm{H}}$ has VC-dimension d then $m(\varepsilon, \delta)$, the \# of samples required to guarantee learning within ε of the target language, $1-\delta$ of the time, is at least:

$$
m(\mathrm{e}, \mathrm{~d})>\log (2)\left(\frac{d}{4} \log \left(\frac{3}{2}\right)+\log \left(\frac{1}{8 \delta}\right)\right)
$$

OK, smarty: what can we do?

- Make the hypothesis space finite, small, and 'easily separable'
- One solution: parameterize set of possible grammars (languages) according to a small set of parameters
- We've seen the head-first/final parameter

English is function-argument form

function

 argsthe stock sold at a bargain price
sceenwith envy
the over-priced stock

Other languages are the mirrorinverse: arg-function

This is like Japanese

English form

Bengali, German, Japanese form

Variational space of languages

Language	S-H	C-H	C	Ng	Va	Vt	SR	Scr	$\begin{array}{\|l\|} \hline \mathbf{N P} \\ \mathbf{S c r} \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{O p} \\ \text { Scr } \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{L D} \\ \mathrm{Sc} \end{array}$	V2	Wh	Pro
Arabic														
Dutch														
English														
French														
German														
Hindi														
Icelandic														
Irish														
Italian														
Japanese														
Malay														
Mandarin														
Swe dish														
Tamil														

Actual (prolog) code for this diff

\% parametersEng.pl
\%\% X-Bar Parameters specInitial.
specFinal :- \+ specInitial.
headInitial(_).
headFinal (X) :- $\+$ headInitial (X).
agr(weak).
\%\% V2 Parameters
\% Q is available as adjunction site boundingNode(i2). boundingNode(np).
\%\% Case Adjacency Parameter CaseAdjacency. \% holds
\%\% Wh In Syntax Parameter whinSyntax.
\%\% Pro-Drop Parameter no proDrop.

\%\% X-Bar Parameters

 specInitial.specFinal :- \+ specInitial.
headFinal.
headInitial :- $\backslash+$ headFinal.
headInitial(X) :- $\backslash+$ headFinal(X). headFinal(_) :- headFinal.
agr(strong).
\%\% V2 Parameters
\%\% Subjacency Bounding Nodes boundingNode(i2).
boundingNode(np).
\%\% Case Adjacency Parameter no caseAdjacency.
\%\% Wh In Syntax Parameter no whInSyntax.
\%\% Pro-Drop
6.8633/9.6113 Lecture $\mathrm{P} 2 \mathrm{SDP5} 5 \mathrm{p}$.

Learning in parameter space

- Greedy algorithm: start with some randomized parameter settings

1. Get example sentence, s
2. If s is parsable (analyzable) by current parameter settings, keep current settings; o.w.,
3. Randomly flip a parameter setting \& go to Step 1.

More details

- 1-bit different example that moves us from one setting to the next is called a trigger
- Let's do a simple model - 3 parameters only, so 8 possible languages

Tis a gift to be simple...

- Just 3 parameters, so 8 possible languages (grammars) - set 0 or 1
- Complement first/final (dual of Head $1^{\text {st }}$)
- English: Complement final (value = 1)
- Specifier first/final (determiner on right or left, Subject on right or left)
- Verb second or not (German/not German)

3-parameter case

1. Specifier first or final
2. Complement (Arguments) first/final
3. Verb $2^{\text {nd }}$ or not

Spec 1st specifier

(NP)
6.863J/9.611J Lecture 22 Sp03

Parameters

Spec 1st Sentence Subject Verb... specifier (subject NP)

Spec final Sentence

Verb Subject...

(subject NP)

Comp(lement) Parameter

Comp $1^{\text {st }}$

...Object Verb
Comp final

Verb
 NP

Verb Object...
6.863J/9.611J Lecture 22 Sp03

Verb second (V2)

- Finite (tensed) verb must appear in exactly $2^{\text {nd }}$ position in main sentence

English / German

$$
\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]=\text { 'German' }
$$

Even this case can be hard...

- German: dass Karl da Buch kauft
(that Karl the book buys) Karl kauft das Buch
- OK, what are the parameter settings?
- Is German comp- $1^{\text {st }}$? (as the first example suggests) or comp-last?
- Ans: V2 parameter - in main sentence, this moves verb kauft to $2^{\text {nd }}$ position

Input data - 3 parameter case

- Labels: S, V, Aux, O, O1, O2
- All unembedded sentences (psychological fidelity)
- Possible English sentences:

$$
\begin{aligned}
& \text { S V, S V O1 O2; S Aux V O; S Aux V O1 O2; Adv S V; } \\
& \text { Adv S V O; Adv S V O1 O2; Adv S Aux V; Adv S Aux } \\
& \text { V O; Adv S Aux V O1 O2 }
\end{aligned}
$$

- Too simple, of course: collapses many languages together...
- Like English and French...oops!

Sentences drawn from target

- Uniformly
- From possible target patterns
- Learner starts in random initial state, 1,... 8
- What drives learner?
- Errors

Learning driven by language triggering set differences

A trigger is a sentence in one language that Isn't in the other

How to get there from here

- transitions based on example sentence

Prob(transition) based on set differences between
languages, normalized by target language $\left|L_{\text {target }}\right|$ examples (in our case, if $\mathrm{t}=$ English,36 of them)
6.863J/9.611J Lecture 22 Sp03

Formalize this as...

- A Markov chain relative to a target language, as matrix M, where $M(i, j)$ gives the transition pr of moving from state i to state j (given target language strings)
- Transition pr's based on cardinality of the set differences
- $M \times M=p r \prime s$ after 1 example step; in the limit, we find M^{∞}
- Here is M when target is $\mathrm{L}_{5}=$ 'English'

The Ringstrasse (Pax Americana version)

Markov matrix, target = 5 (English)

