6.863J Natural Language Processing Lecture 6: part-of-speech tagging to parsing

Instructor: Robert C. Berwick

The Menu Bar

- Administrivia:
- Schedule alert: Lab1 due next today Lab 2, posted Feb 24; due the Weds after this March 5 (web only - can post pdf)
- Agenda:
- Finish up POS tagging - Brill method
- From tagging to parsing: from linear representations to hierarchical representations

Two approaches

1. Noisy Channel Model (statistical) -
2. Deterministic baseline tagger composed with a cascade of fixup transducers
These two approaches will the guts of Lab 2
(lots of others: decision trees, ...)

Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Is tag sequence X likely with these words?
- Noisy channel model is a "Hidden Markov Model":
- Find X that maximizes_probability product

Finding the best path from start to stop

- What is best path from Start to each node?
- Work from left to right
- Each node stores its best path from Start (as probability plus one backpointer)
- Special acyclic case of Dijkstra's shortest-path algorithm
- Faster if somezacas/states are absent

Method: Viterbi algorithm

- For each path reaching state s at step (word) t, we compute a path probability. We call the max of these viterbi(s,t)
- [Base step] Compute viterbi(0,0)=1
- [Induction step] Compute viterbi(s',t+1), assuming we know viterbi(s,t) for all s

Viterbi recursion

path-prob(s'|s,t) =
probability of path to s' through s

viterbi(s,t)
 $a\left[s, s^{\prime}\right]$

transition probability

$$
s \rightarrow s^{\prime}
$$

viterbi $\left(s^{\prime}, t+1\right)=$ max $_{s \in S T A T E S}$ path-prob(s' $\left.\mid \mathrm{s}, \mathrm{t}\right)$

Viterbi Method...

- This is almost correct...but again, we need to factor in the unigram prob of a state s' emitting a particular word w given an observation of that surface word w
- So the correct formula for the path prob to s^{\prime} from s is: path-prob $\left(s^{\prime} \mid s, t\right)=$ viterbi(s,t) $* a\left[s, s^{\prime}\right] * \quad b_{s^{\prime}}\left(0_{t}\right)$

Bigram
Unigram
Path prob so far to s transition prob output prob at ${ }^{6.8633 / 9.6111}$ Lecture 6 たe®3 state s^{\prime} state s'

Finally...

- As before, we want to find the max path probability, over all states s:
$\max _{\mathrm{s} \in \text { STATES }}$ path-prob(s' $\mid \mathrm{s}, \mathrm{t}$)

Or as in your text...p. 179

function Viterbi(observations of len T,state-graph) returns best-path
num-states \leftarrow NUM-OF-STATES (state-graph)
Create a path probability matrix viterbi[num-states $+2, T+2$]
viterbi[0,0] $\leftarrow 1.0$
for each time step t from 0 to T do
for each state s from 0 to num-states do
for each transition s^{\prime} from s specified by state-graph $\underline{\text { new-score } \leftarrow \text { viterbi }[s, t] * a\left[s, s^{\prime}\right] * b_{c}\left(o_{t}\right) \text { Find the path probability }}$ if $\left(\left(\right.\right.$ viterbi $\left.\left[s^{\prime}, t+1\right]=0\right) \|\left(\right.$ new-score $\left.\left.>\operatorname{viterbi}\left[s^{\prime}, t+1\right]\right)\right)$
then

$$
\begin{aligned}
& \text { viterbi }\left[s^{\prime}, t+l\right] \leftarrow \text { new-score } \\
& \text { back-pointer }\left[s^{\prime}, t+l\right] \leftarrow s
\end{aligned}
$$

Find the max so far

Backtrace from highest probability state in the final column of viterbi[] and return path

Two approaches

1. Noisy Channel Model (statistical) what's that?? (we will have to learn some statistics)
2. Deterministic baseline tagger composed with a cascade of fixup transducers
These two approaches will the guts of Lab 2
(lots of others: decision trees, ...)

Fixup approach: Brill tagging (a kind of transformation-based learning)

Another FST Paradigm: Successive Fixups

- Like successive markups but alter
- Morphology
- Phonology
- Part-of-speech tagging

6.863J/9.611J Lecture 6 Sp03

Transformation-Based Tagging (Brill 1995)


```
Nie Edit View Lio Lommunicator Help
#
& InstantMessage 图 6.863J Syllabus 图 Google 图 BE768 Biologica 图 Members 图 WebMail 图 Connections 图 BizJournal 图 Smartlupdate 图 Mktplace 图 Home
Bookmarks & Location: http://wwww.ling.gu.se/~lager/Home/brillagger_ui.html
```


Brill Tagger

```
Powered by \(\mu\)－TBL Technology
C Swedish © English Russian
Text：
Secretariat is expected to race tomorrow
V Trace
```

```
Analyze
```

```
Analyze
```

```
Ele tdit Yiew Gio Lommunicator Help
S
& InstantMessage 图 6.863J Syllabus 图 Google 图 BE768 Biologica 图 Members 图 WebMail 图 Connections 图 BizJournal 图 Smartlupdate 图 Mktplace 图 Home
    Bookmarks & Location: http://www.ling.gu.se/~lager/tagger.cgi?language=English&input=Secretariat+is+expected+to+race+tomorow&<trace=on
```


Tokenization

```
Secretariat is expected to race tomorrow
```


Lexical lookup

```
Secretariat/NNP is/VBZ expected/VBN to/TO race/NN tomorrow/NN
```


Guessing

Contextual－rule application

Intermediate analysis：

Secretariat／NNP is／VBZ expected／VBN to／TO race／NH tomorrow／NN
Applied rule：
tag：NN＞VB＜－tag：TO＠［－1］．

Analysis

Transformation based tagging

- Combines symbolic and stochastic approaches: uses machine learning to refine its tags, via several passes
- Analogy: painting a picture, use finer and finer brushes - start with broad brusch that covers a lot of the canvas, but colors areas that will have to be repainted. Next layer colors less, but also makes fewer mistakes, and so on.
- Similarly: tag using broadest (most general) rule; then an narrower rule, that changes a smaller number of tags, and so on. (We haven't said how the rules are learned)
- First we will se.e. ho3,9.011 tecture the TBL rules are applied

Applying the rules

1. First label every word with its most-likely tag (as we saw, this gets 90% right...!) for example, in Brown corpus, race is most likely to be a Noun: $P(\mathrm{NN} \mid$ race $)=0.98$
$P($ VB \mid race $)=0.02$
2. ...expected/VBZ to/T TO race/VB morrow/NN ...the/DT race/NN for/IN outer/JJ space/NN
3. Use transformational (learned) rules to change tags:
Change NN to VB when the previous tag is TO

Initial Tagging of OOV Words

	Change Tag		
$\#$	From	To	Condition
1	NN	NNS	Has suffix -s
2	NN	CD	Has character -
3	NN	JJ	Has character -
4	NN	VBN	Has suffix -ed
5	NN	VBG	Has suffix -ing
6	$? ?$	RB	Has suffix -ly
7	$? ?$	JJ	Adding suffix -ly results in a word.
8	NN	CD	The word \$ can appear to the left.
9	NN	JJ	Has suffix -al
10	NN	VB	The word would can appear to the left.
11	NN	CD	Has character 0
12	NN	JJ	The word be can appear to the left.
13	NNS	JJ	Has suffix -us
14	NNS	VBZ	The word it can appear to the left.
15	NN	JJ	Has suffix -ble
16	NN	JJ	Has suffix -ic
17	NN	CD	Has character $\mathbf{1}$
18	NNS	NN	Has suffix -ss
19	$? ?$	JJ	Deleting the prefix un- results in a word
20	NN	JJ	Has suffix -ive

(JupCi viدcu) ICaililiy kuuuiliy -

How?

- 3 stages

1. Start by labeling every word with most-likely tag
2. Then examine every possible transformation, and selects one that results in most improved tagging
3. Finally, re-tags data according to this rule
4. Repeat 1-3 until some stopping criterion (no new improvement, or small improvement)

- Output is ordered list of transformations that constitute a tagging procedure

How this works

- Set of possible 'transforms' is infinite, e.g., "transform NN to VB if the previous word was MicrosoftWindoze \& word braindead occurs between 17 and 158 words before that"
- To limit: start with small set of abstracted transforms, or templates

Templates used: Change a to b when...

The preceding (following) word is tagged \mathbf{z}.
The word two before (after) is tagged \mathbf{z}.
One of the two preceding (following) words is tagged \mathbf{z}.
One of the three preceding (following) words is tagged \mathbf{z}.
The preceding word is tagged \mathbf{z} and the following word is tagged \mathbf{w}.
The preceding (following) word is tagged \mathbf{z} and the word two before (after) is tagged \mathbf{w}.

Variables $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{z}, \boldsymbol{w}$, range over parts of speech

Method

1. Call Get-best-transform with list of potential templates; this calls
2. Get-best-instance which instantiates each template over all its variables (given specific values for where we are)
3. Try it out, see what score is (improvement over known tagged system -- supervised learning); pick best one locally
function TBL(corpus) returns transforms-queue
IntiALIZE-WITH-MOST-LIKELY-TAGS(corpus)
until end condition is met do
templates \leftarrow Generate-Potential-RELEVANT-TEMPLATES best-transform \leftarrow GET-BEST-TRANSFORM(corpus, templates) APPLY-TRANSFORM(best-transform, corpus)
ENQUEUE(best-transform-rule, transforms-queue)
end
return(transforms-queue)
function GET-BEST-TRANSFORM(corpus, templates) returns transform for each template in templates
(instance, score) \leftarrow GET-BEST-INSTANCE (corpus, template)
if (score $>$ best-transform.score) then best-transform \leftarrow (instance, score) return(best-transform)
function Get-Best-Instance(corpus, template) returns transform
for from-tag \leftarrow from $\operatorname{tag}-1$ to $\operatorname{tag}-n$ do
for $t o-t a g \leftarrow$ from tag -1 to tag $-n$ do
for pos \leftarrow from 1 to corpus-size do
if $($ correct-tag $($ pos $)==$ to-tag \& \& current-tag $($ pos $)==$ from-tag $)$ num-good-transforms(current-tag(pos-1))++ elseif (correct-tag(pos)==from-tag \&\& current-tag(pos)==from-tag) num-bad-transforms(current-tag(pos-1))++
end
best-Z $\leftarrow \operatorname{ARGMAX}_{t}($ num-good-transforms (t) - num-bad-transforms (t),
if(num-good-transforms(best-Z) - num-bad-transforms(best-Z)
$>$ best-instance. Z) then
best-instance \leftarrow "Change tag from from-tag to to-tag
if previous tag is best-Z'
return(best-instance)
procedure APPLY-TRANSFORM(transform, corpus)
for pos \leftarrow from 1 to corpus-size do
if (current-tag $($ pos $)==$ best-rule-from $)$
\&\& $($ current-tag $($ pos -1$)==$ best-rule-prev $))$
current-tag $($ pos $)=$ best-rule-to

nonlexicalized rules learned by TBL tagger

	Change tags		
$\#$	From	To	Condition
1	NN	VB	Previous tag is TO
2	VBP	VB	One of the previous 3 tags is MD
3	NN	VB	One of the previous 2 tags is MD
4	VB	NN	One of the previous 2 tags is DT
5	VBD	VBN	One of the previous 3 tags is VBZ

Example
to/TO race/NN \rightarrow VB
might/MD vanish/VBP \rightarrow VB
might/MD not reply/NN \rightarrow VB

Transformations Learned

	Change Tag		
$\#$	From	To	Condition
1	NN	VB	Previous tag is $T O$
2	VBP	VB	One of the previous three tags is $M D$
3	NN	VB	One of the previous two tags is $M D$
4	VB	NN	One of the previous two tags is $D T$
5	VBD	VBN	One of the previous three tags is $V B Z$
6	VBN	VBD	Previous tag is $P R P$
7	VBN	VBD	Previous tag is $N A P$
8	VBD	VBN	Previous tag is $V B D$
9	VBP	VB	Previous tag is $T O$
10	POS	VBZ	Previous tag is $P R P$
11	VB	VBP	Previous tag is $N N S$
12	VBD	VBN	One of previous three tags is $V B P$
13	IN	WDT	One of next two tags is $V B$
14	VBD	VBN	One of previous two tags is $V B$
15	VB	VBP	Previous tag is $P R P$
16	IN	WDT	Next tag is $V B Z$
17	IN	DT	Next tag is $N N$
18	JJ	NNP	Next tag is $N N P$
19	IN	WDT	Next tag is $V B D$
20	JJR	RBR	Next tag is $J J$

BaselineTag*
NN @ \rightarrow VB // TO
VBP @ \rightarrow VB // ... etc.
\section*{Compose this cascade of FSTs.}

Get a big FST that does the initial tagging and the sequence of fixups "all at once."

Error analysis: what's hard for

 taggers- Common errors (> 4\%)
- NN vs .NNP (proper vs. other nouns) vs. JJ (adjective): hard to distinguish prenominally; important to distinguish esp. for information extraction
- RP vs. RB vs IN: all can appear in sequences immed. after verb
- VBD vs. VBN vs. JJ: distinguish past tense, past participles (raced vs. was raced vs. the out raced horse)

What's hard

- Unknown words
- Order 0 idea: equally likely over all parts of speech
- Better idea: same distribution as 'Things seen once' estimator of 'things never seen' - theory for this done by Turing (again!)
- Hapax legomenon
- Assume distribution of unknown words is like this
- But most powerful methods make use of how word is spelled
- See file in the course tagging dir on this

Or unknown language

- Vse schastlivye sen'i pokhozhi brug na druga, kazhdaja neschastlivaja sem'ja neschastliva po-svoemu

Most powerful unknown word detectors

- 3 inflectional endings (-ed, -s, -ing); 32 derivational endings (-ion, etc.); capitalization; hyphenation
- More generally: should use morphological analysis! (and some kind of machine learning approach)
- How hard is this? We don't know - we actually don't know how children do this, either (they make mistakes)

Laboratory 2

- Goals:

1. Use both HMM and Brill taggers
2. Find errors that both make, relative to genre
3. Compare performance - use of kappa \& 'confusion matrix'
4. All the slings \& arrows of corpora - use Wall Street Journal excerpts, as well as 'switchboard' corpus

Brown/Upenn corpus tags

	Tag	Description	Example	Tag	Description	Example
	CC	Coordin. Conjunction	and, but, or	SYM	Symbol	
	CD	Cardinal number	one, two, three	TO	"to"	to
	DT	Determiner	a, the	UH	Interjection	ah, oops
	EX	Existential 'there'	there	VB	Verb, base form	eat
	FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
	IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
	JJ	Adjective	yellow	VBN	Verb, past participle	eaten
	JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
	JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
] text	LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
J. textı	MD	Modal	can, should	WP	Wh-pronoun	what, who
D. 297	NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
1. 297	NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
98.6	NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
1M words	NNPS	Proper noun, plural	Carolinas	\#	Pound sign	\#
60K tag	PDT	Predeterminer	all, both	"	Left quote	(' or ")
60K tag	POS	Possessive ending	's	"	Right quote	(' or ")
counts	PP	Personal pronoun	I, you, he	(Left parenthesis	$\left(\left[,\left(,,^{\prime},<\right)\right.\right.$
	PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],), \}, >)
	RB	Adverb	quickly, never		Comma	
	RBR	Adverb, comparative	faster		Sentence-final punc	(. ! ?)
	RBS	Adverb, superlative	fastest		Mid-sentence punc	$(: ; \ldots-)$
	RP	Particle	up, off			

Coda on kids

C: "Mommy, nobody don't like me"
A: No, say, "nobody likes me"
C: Nobody don't likes me
A: Say, "nobody likes me"
C: Nobody don't likes me
[7 repetitions]
C: Oh! Nobody don't like me!
6.863J/9.611J Lecture 6 Sp03

Parsing words - review

- We are mapping between surface, underlying forms
- Sometimes, information is 'invisible' (I.e., erased e, or an underlying/surface 0)
- There is ambiguity (more than one parse)

From lines to hierarchical respresentions...

- From this:
morph-ology
- To this:

VP [head=vouloir,...]

$\mathbf{V}_{\text {[head=}}=$ vouloir, ...
the problem of morphology \longrightarrow veut ("word shape") -
tense=Present,
num=SG, person=P3]
veut

What can't linear relations represent?

- wine dark sea \rightarrow (wine (dark sea)) or ((wine dark) sea) ?
- deep blue sky
- Can fsa's represent this?
- Not really: algebraically, defined as being associative (doesn't matter about concatenation order)

So, from linear relations... to hierarchies

Examples

Verb \rightarrow thrills
VP \rightarrow Verb NP
$S \rightarrow N P V P$

6.863J/9.611J Lecture $6 \mathrm{Sp03}$

Parsing for fsa's: keep track of what 'next state' we could be in

 at each step

NB: ambiguity $=>1$ path through network

$$
\begin{aligned}
& =>1 \text { sequence of states ('parses') }
\end{aligned}
$$

```
Ele tdit Yiew Gio Lommunicator Help
```



```
尽Instant Message 图 6．863 Syllabus 图 Google 图 BE768 Biologica 图 Members 图 WebMail 图 Connections 图 BizJournal 图 SmartUpdate 图 Mktplace 图 Home Bookmarks L／Location：｜http：／／wwww．ling．gu．se／～lager／tagger．cgi？language＝English\＄input＝fruit＋flies＋like＋a＋banana\＆trace＝on
```


Brill Tagger

Powered by μ－TBL Technology
C Swedish © English \subset Russian
Text：

V Trace Analyze

Tokenization

fruit flies like a banana

Lexical lookup

fruit／NN flies／VBZ like／IN a／DT banana／NN

Guessing

Contextual－rule application

FSA Terminology

- Transition function: next state unique = deterministic fsa
- Transition relation: > 1 next state $=$ nondeterministic fsa

Methods for parsing

- How do we handle ambiguity?
- Methods:

1. Backtrack
2. Convert to deterministic machine (ndfsa \rightarrow dfsa): offline compilation
3. Pursue all paths in parallel: online computation ("state set" method)
4. Use lookahead

- We will use all these methods for more complex machines/language representations

FSA terminology

- Input alphabet, Σ; transition mapping, δ; finite set of states, Q; start state q_{0}; set of final states, q_{f}
- $\delta(q, s) \rightarrow q^{\prime}$
- Transition function: next state unique = deterministic fsa
- Transition relation: > 1 next state = nondeterministic fsa

State-set method: simulate a nondeterministic fsa

- Compute all the possible next states the machine can be in at a step = state-set
- Denote this by $S_{i}=$ set of states machine can be in after analyzing i tokens
- Algorithm has 3 parts: (1) Initialize; (2) Loop; (3) Final state?
- Initialize: S_{0} denotes initial set of states we're in, before we start parsing, that is, q_{0}
- Loop: We must compute S_{i}, given S_{i-1}
- Final?: $S_{f}=$ set of states machine is in after reading all tokens; we want to test if there is a final state in sthere eatue 5 sol3

State-set parsing

Initialize: \quad Compute initial state set, S_{0}

1. $\mathrm{S}_{0} \leftarrow \mathrm{q}_{0}$
2. $\mathrm{S}_{0} \leftarrow \varepsilon$-closure $\left(\mathrm{S}_{0}\right)$

Loop: \quad Compute S_{i} from S_{i-1}

1. For each word $\mathrm{w}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{n}$
2. $S_{i} \leftarrow \bigcup_{q \in S_{i-1}} \delta\left(q, w_{i}\right)$
3. $\mathrm{S}_{\mathrm{i}} \leftarrow \varepsilon$-closure $\left(\mathrm{S}_{\mathrm{i}}\right)$
4. if $S_{i}=\varnothing$ then halt $\&$ reject else continue

Final: Accept/reject

What's the minimal data

structure we need for this?

- [S, i] where $S=$ denotes set of states we could be in; i denotes current point we're at in sentence
- As we'll see, we can use this same representation for parsing w/ more complex networks (grammars) - we just need to add one new piece of information for state names
- In network form

- In rule form:
$q_{i} \rightarrow t \bullet \beta q_{f} \quad$ where $\tau=$ some token of the input, and $\beta=$ remainder (so 'dot' represents how far we have traveled)
6.863J/9.6113 Lecture 6 Sp03

Example

6.863J/9.611J Lecture 6 Sp03

Use backpointers to keep track of the different paths (parses):

When is it better to convert at compile time vs. run time? (for fsa)

- Run time: compute next state set on the fly
- Compile time: do it once and for all
- When would this difference show up in natural languages (if at all)?

Where do the fsa states come from?

- States are equivalence classes of words (tokens) under the operation of substitution
- Linguistic formulation (Wells, 1947, pp. 8182): "A word A belongs to the class determined by the environment ___ X if $A X$ is either an utterance or occurs as a part of some utterance" (distributional analysis)
- This turns out to be algebraically correct
- Can be formalized - the notion of syntactic equivalenceras3,.611 Letwre 5 spo3

X-files: fragments from an alien

 language1. Werid lost the election
2. Gore will lose the election
3. Gore could lose the election
4. Gore should lose the election
5. Gore did lose the election
6. Gore could have lost the election
7. Gore should have lost the election
8. Gore will have lost the election
9. Gore could have been losing the election
10. Gore should have been losing the election
11. Gore will have been losing the election
12. Gore has lost the election

More X-files

14. Bush lost the election
15. Bush will lose the election
16. Bush could lose the election
17. Bush should lose the election
18. Bush did lose the election
19. Bush could have lost the election
20. Bush should have lost the election
21. Bush will have lost the election
22. Bush could have been losing the election
23. Bush should have been losing the election
24. Bush will have been losing the election
25. Bush has .ost the eleation

Formally...

- Definition. A binary relation between sets A, B, is a subset (possibly empty) of $A \times B$
- Definition. Strings k, r are left-substitutable in a language L, if, for all strings w defined over Σ^{*}, $k w \in L$ iff $r w \in L$
- Fact. Left-substitutability is an equivalence relation (reflexive, transitive, symmetric)
- Definition. An equivalence relation over Σ is finite rank if it divides Σ into finitely many equivalence classes
- Definition. A binary relation R is called rightinvariant if, for all $p, r \in \Sigma^{*}, p R r \Rightarrow p w R r w$

And formally...

- Fact. A right-invariant relation R is an equivalence relation
- Theorem (Myhill-Nerode, 1956)

Theorem (Myhill-Nerode, 1956).

- Let $L \subseteq \Sigma^{*}$. Then the following 3 propositions are equivalent:

1. L is generated (accepted) by some finitestate automaton (finite transition network);
2. L is the union of certain equivalence classes of a right-invariant equivalence relation of finite rank
3. Let the equivalence relation R be defined as follows: $x R y$ iff x and y are left-substitutable in L. Then this relation R is of finite-rank and is right-invariant [this is Wells' definition]

Finite \# of bins = finite state

Gives easy way to show what is not finite-state
Eg, $a^{n} c b^{n}$, for all $n>0$
Proof by contradiction.
Suppose there was such an FSA. By the theorem, this FSA is of finite rank, and classifies all strings in Σ^{*} into one of a finite number of classes.
By the pigeonhole principle, there must exist some string a^{i} s.t. a^{j} with $j \neq i$ is in the same equivalence class as a^{i}. But then the fsa must recognize both $a^{i} c a^{j}$ and $a^{i} \mathrm{c} a^{i}$, a contradiction

Why not fsa's forever?

- Can't yield the right set of strings= weak generative capacity (antiantimissle...)
- Can't yield the right set of structures = strong generative capacity (dark blue sky)
- How do these failures show up?

A more complex fsa

Conversion to deterministic machine

6.863J/9.611J Lecture 6 Sp03

What are we missing here?

6.863J/9.611J Lecture 6 Sp03

We are missing the symmetry

Having a poor representation...

- Shows up in having duplicated states (with no other connection to each other)
- System would be 'just as complex'= have the same size (what is size of automaton?) even if the network were not symmetric
- So we have failed to capture this regularity \& the network could be compressed
- How?

Compressability reveals rendundancy (pattern)that we have missed

Active:

$+$
Rule that flips network=

Passive:

Aka "transformational grammar"

But it's worse than that... more redundancy even so

So, obvious programming approach: use a subroutine

Subnetworks as subroutines, to compress the description

Noun phrase:

Bush
"splice out" common subnets

Could be worse...

Could be raining...

Noun "specifiers"

6.863J/9.611J Lecture 6 Sp03

It could be even worse...

Examples

Verb \rightarrow thrills
VP \rightarrow Verb NP
$S \rightarrow N P V P$

6.863J/9.611J Lecture $6 \mathrm{Sp03}$

The notion of a common subnetwork

- Equivalent to the notion of a phrase
- A Noun Phrase (NP)
- Defined by substitution class of a sequence of words (aka "a constituent") - extension beyond substitution of single words
- A phrase iff we can interchangeably substitute that sequence of words regardless of context
- So also gives us the notion of a context-free grammar (CFG)

Constituents, aka phrases

- Building blocks that are units of words concatenated together
- Why?
- Ans:

1. They act together (i.e., behave alike under operations) - what operations?
2. Succinctness
3. (Apparently) nonadjacent constraints

The deepest lesson

- Claim: all apparently nonadjacent relationships in languge can be reduced to adjacent ones via projection to a new level of representation
- (In one sense, vacuous; in another, deep)
- Example: Subject-Verb agreement (agreement generally)
- Example: so-called wh-movement

Gaps ("deep" grammar!)

- Pretend "kiss" is a pure transitive verb.
- Is "the president kissed" grammatical?
- If so, what type of phrase is it?
- the sandwich that
- I wonder what
- What else has
the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

Examples

- The guy that we know in Somerville likes icecream
- Who did the guy who lives in Somerville see

The deep reason why

- Machinery of the mind: based only on concatenation of adjacent elements - not on 'counting' eg., "take the 7th element \& move it..."
- Runs through all of linguistic representations (stress, metrical patterns, phonology, syntax, ...)
- Strong constraint on what we have to represent

Constituents

- Basic 'is-a' relation
- Act as 'whole units' -
- I want this student to solve the problem
- ?? Student, I want this to solve the problem
- This student, I want to solve the problem
- Sometimes, we don't see whole constituents...book titles (claimed as objection to constituency):
- Sometimes a Great Notion
- The Fire Next Time
- Why might that be?

