
6.863J Natural Language Processing
Lecture 6: part-of-speech tagging to 

parsing

Instructor: Robert C. Berwick
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The Menu Bar
• Administrivia:

• Schedule alert: Lab1 due next today Lab 2, 
posted Feb 24; due the Weds after this –
March 5 (web only – can post pdf)

• Agenda:
• Finish up POS tagging – Brill method
• From tagging to parsing: from linear 

representations to hierarchical 
representations
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Two approaches

1. Noisy Channel Model (statistical) –
2. Deterministic baseline tagger composed

with a cascade of fixup transducers
These two approaches will the guts of Lab 2
(lots of others: decision trees, …)
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Summary

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence X likely with these words?
• Noisy channel model is a “Hidden Markov Model”:

Start PN Verb Det Noun  Prep Noun   Pre

Bill  directed   a    cortege  of   autos  thro

0.4 0.6

0.001

• Find X that maximizes probability product

probs
from tag
bigram
model

probs from
unigram
replacement
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Finding the best path from start to 
stop

• Use dynamic programming 
• What is best path from Start to each node?

• Work from left to right
• Each node stores its best path from Start (as 

probability plus one backpointer)

• Special acyclic case of Dijkstra’s shortest-path
algorithm

• Faster if some arcs/states are absent

Det:t
he 0

.32Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj :d
irec

ted
…

Adj:cool 0.0009Noun:cool 0.007
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Method: Viterbi algorithm
• For each path reaching state s at step (word) 

t, we compute a path probability. We call the 
max of these viterbi(s,t)

• [Base step] Compute viterbi(0,0)=1
• [Induction step] Compute viterbi(s',t+1),

assuming we know viterbi(s,t) for all s



6.863J/9.611J Lecture 6 Sp03

Viterbi recursion

path-prob(s'|s,t) = viterbi(s,t)    *           a[s,s']

probability of path to max path score  *      transition probability
s’ through s for state s at time t           s →s’

viterbi(s',t+1) = max s ∈STATES path-prob(s' | s,t)
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Viterbi Method…

• This is almost correct…but again, we need 
to factor in the unigram prob of a state s’ 
emitting a particular word w given an 
observation of that surface word w

• So the correct formula for the path prob
to s’ from s is:
path-prob(s'|s,t) = viterbi(s,t) * a[s,s'] * bs’ (ot)

Bigram
transition prob

to state s’

Unigram
output prob at

state s’
Path prob so far to s
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Finally…

• As before, we want to find the max path 
probability, over all states s:

max s ∈STATES path-prob(s' | s,t)
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Or as in your text…p. 179

Find the path probability

Find the max so far
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Two approaches

1. Noisy Channel Model (statistical) –
what’s that?? (we will have to learn 
some statistics)

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, …)
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Fixup approach: Brill tagging (a 
kind of transformation-based
learning)
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Another FST Paradigm: 
Successive Fixups

• Like successive markups but alter
• Morphology
• Phonology
• Part-of-speech tagging
• …
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Transformation-Based Tagging
(Brill 1995)

figure from Brill’s thesis
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Transformation based tagging

• Combines symbolic and stochastic approaches: 
uses machine learning to refine its tags, via 
several passes

• Analogy: painting a picture, use finer and finer 
brushes - start with broad brusch that covers a 
lot of the canvas, but colors areas that will have 
to be repainted. Next layer colors less, but also 
makes fewer mistakes, and so on.

• Similarly: tag using broadest (most general) 
rule; then an narrower rule, that changes a 
smaller number of tags, and so on.  (We haven’t 
said how the rules are learned)

• First we will see how the TBL rules are applied
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Applying the rules
1. First label every word with its most-likely tag (as 

we saw, this gets 90% right…!) for example, in 
Brown corpus, race is most likely to be a Noun:
P(NN|race)= 0.98
P(VB|race)= 0.02

2. …expected/VBZ to/TO race/NN tomorrow/NN
…the/DT race/NN for/IN outer/JJ space/NN

3. Use transformational (learned) rules to change 
tags:
Change NN to VB when the previous tag is TO

TO race/VB
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Initial Tagging of OOV Words

figure from Brill’s thesis
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(supervised) learning pudding -
How?

• 3 stages
1. Start by labeling every word with most-likely

tag
2. Then examine every possible transformation, 

and selects one that results in most improved 
tagging

3. Finally, re-tags data according to this rule
4. Repeat 1-3 until some stopping criterion (no 

new improvement, or small improvement)
• Output is ordered list of transformations that 

constitute a tagging procedure 



6.863J/9.611J Lecture 6 Sp03

How this works

• Set of possible ‘transforms’ is infinite, e.g., 
“transform NN to VB if the previous word 
was MicrosoftWindoze & word braindead
occurs between 17 and 158 words before 
that”

• To limit: start with small set of abstracted 
transforms, or templates
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Templates used: Change a to b
when…

Variables a, b, z, w, range over parts of speech
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Method

1. Call Get-best-transform with list of 
potential templates; this calls

2. Get-best-instance which instantiates 
each template over all its variables (given 
specific values for where we are)

3. Try it out, see what score is (improvement 
over known tagged system -- supervised
learning); pick best one locally
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nonlexicalized rules learned by 
TBL tagger
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Transformations Learned
figure from Brill’s thesis

NN @ VB // TO _
VBP @ VB // ... _

etc.

Compose this
cascade of FSTs.

Get a big FST that
does the initial
tagging and the

sequence of fixups
“all at once.”

BaselineTag*
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Error analysis: what’s hard for
taggers
• Common errors (> 4%)

• NN vs .NNP  (proper vs. other nouns) vs. JJ 
(adjective): hard to distinguish prenominally;
important to distinguish esp. for information 
extraction

• RP vs. RB vs IN: all can appear in sequences
immed. after verb

• VBD vs. VBN vs. JJ: distinguish past tense, 
past participles (raced vs. was raced vs. the
out raced horse)
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What’s hard

• Unknown words
• Order 0 idea: equally likely over all parts of speech
• Better idea: same distribution as ‘Things seen once’ 

estimator of ‘things never seen’ - theory for this 
done by Turing (again!)

• Hapax legomenon
• Assume distribution of unknown words is like this
• But most powerful methods make use of how word is 

spelled

• See file in the course tagging dir on this
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Or unknown language

• Vse schastlivye sen’i pokhozhi brug na 
druga, kazhdaja neschastlivaja sem’ja 
neschastliva po-svoemu
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Most powerful unknown word 
detectors

• 3 inflectional endings (-ed, -s, -ing); 32 
derivational endings (-ion, etc.);
capitalization; hyphenation

• More generally: should use morphological 
analysis!  (and some kind of machine 
learning approach)

• How hard is this?  We don’t know - we
actually don’t know how children do this, 
either (they make mistakes)
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Laboratory 2 

• Goals:
1. Use both HMM and Brill taggers
2. Find errors that both make, relative to 

genre
3. Compare performance – use of kappa & 

‘confusion matrix’
4. All the slings & arrows of corpora – use

Wall Street Journal excerpts, as well as 
‘switchboard’ corpus
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Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts
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Coda on kids

C: “Mommy,  nobody don’t like me”

A: No, say, “nobody likes me”

C:  Nobody don’t likes me

A: Say, “nobody likes me”

C:  Nobody don’t likes me
[ 7 repetitions]

C:  Oh!   Nobody don’t like me!
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Parsing words - review

• We are mapping between surface, 
underlying forms

• Sometimes, information is ‘invisible’ (I.e., 
erased e, or an underlying/surface 0)

• There is ambiguity (more than one parse)
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From lines to hierarchical 
respresentions…

• From this:
morph-ology

• To this:
VPVP [head=vouloir,...]

VV[head=vouloir,
tense=Present,
num=SG, person=P3]

......

veutveutthe problem

of morphology

(“word shape”) -

an area of linguistics
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What can’t linear relations 
represent?

• wine dark sea → (wine (dark sea)) or
((wine dark) sea) ?

• deep blue sky

• Can fsa’s represent this?
• Not really: algebraically, defined as being 

associative (doesn’t matter about 
concatenation order)
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So, from linear relations… to 
hierarchies
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Examples

NPVerb

VPNP

S

A roller coaster thrills every teenager

Verb → thrills
VP→ Verb NP
S → NP VP
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Parsing for fsa’s: keep track of 
what ‘next state’ we could be in 
at each step

NB: ambiguity =   > 1 path through network
=   > 1 sequence of states (‘parses’)
=   > 1 ‘syntactic rep’ =  >1  ‘meaning’

fruit flies like a banana

fruit

fruit flies
flies

0 1 2 3
0 4

5

like

like
ε

a
banana
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FSA Terminology

• Transition function: next state unique = 
deterministic fsa

• Transition relation: > 1 next state =
nondeterministic fsa

fruit flies like a banana

fruit

fruit flies
flies

0 1 2 3
0 4

5

like

like
ε

a
banana
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Methods for parsing

• How do we handle ambiguity? 
• Methods:

1. Backtrack
2. Convert to deterministic machine (ndfsa → dfsa):

offline compilation
3. Pursue all paths in parallel: online computation

(“state set” method)
4. Use lookahead

– We will use all these methods for more 
complex machines/language representations
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FSA terminology

• Input alphabet,Σ; transition mapping, δ;
finite set of states, Q; start state q0; set of 
final states, qf

• δ(q, s)→ q’
• Transition function: next state unique = 

deterministic fsa
• Transition relation: > 1 next state = 

nondeterministic fsa
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State-set method: simulate a 
nondeterministic fsa
• Compute all the possible next states the 

machine can be in at a step = state-set
• Denote this by Si = set of states machine can 

be in after analyzing i tokens
• Algorithm has 3 parts: (1) Initialize; (2) Loop;

(3) Final state?
• Initialize: S0 denotes initial set of states we’re 

in, before we start parsing, that is, q0

• Loop: We must compute Si , given Si-1

• Final?: Sf = set of states machine is in after 
reading all tokens; we want to test if there is a 
final state in there
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State-set parsing

Accept/reject
1. If qf ∈ Sn then accept else reject

Final:

Compute Si from Si-1

1. For each word wi , i=1,2,…,n
2.
3. Si← ε−closure(Si )
4. if Si = ∅ then halt & reject else 

continue

Loop:

Compute initial state set, S0

1. S0←q0

2. S0← ε−closure(S0 )

Initialize:

1
( , )

ii q S iS q wδ
−∈← ∪
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What’s the minimal data 
structure we need for this?
• [S, i ] where S = denotes set of states we 

could be in; i denotes current point we’re at in 
sentence

• As we’ll see, we can use this same
representation for parsing w/ more complex 
networks (grammars) - we just need to add one
new piece of information for state names

• In network form
• In rule form:

qi→t•β qf where τ= some token of the input,
and β = remainder (so ‘dot’ represents how far 
we have traveled)

qkαqi β
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Example

fruit flies like a banana

fruit

fruit flies
flies

1 2 3 4

5

like

like
ε

a
banana

0
fruit

fruit

0 1

fruit

flies
flies

fruit

fruit

flies

0 2
ε

3

like

like

like
flies

flies
1

a
4

a

like

like ε
2 3

banana

banana
4

5

a
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Use backpointers to keep track of 
the different paths (parses): 

S0:[0]      S1:[0,1]      S2:[1, 2, 3]      S3:[2, 3]   S4:[4] S5:[5]

State set 0 State set f
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When is it better to convert at 
compile time vs. run time? (for fsa)

• Run time: compute next state set on the 
fly

• Compile time: do it once and for all
• When would this difference show up in 

natural languages (if at all)?
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Where do the fsa states come from?

• States are equivalence classes of words 
(tokens) under the operation of substitution

• Linguistic formulation (Wells, 1947, pp. 81-
82): “A word A belongs to the class 
determined by the environment ____X if AX is
either an utterance or occurs as a part of 
some utterance” (distributional analysis)

• This turns out to be algebraically correct
• Can be formalized - the notion of syntactic

equivalence
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X-files: fragments from an alien 
language
1. Gore lost the election
2. Gore will lose the election
3. Gore could lose the election
4. Gore should lose the election
5. Gore did lose the election
6. Gore could have lost the election
7. Gore should have lost the election
8. Gore will have lost the election
9. Gore could have been losing the election
10.Gore should have been losing the election
11.Gore will have been losing the election
12.Gore has lost the election
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More X-files
14.Bush lost the election
15.Bush will lose the election
16.Bush could lose the election
17.Bush should lose the election
18.Bush did lose the election
19.Bush could have lost the election
20.Bush should have lost the election
21.Bush will have lost the election
22.Bush could have been losing the election
23.Bush should have been losing the election
24.Bush will have been losing the election
25.Bush has lost the election
26 B h h b l i th l ti
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Formally…

• Definition. A binary relation between sets A, B, 
is a subset (possibly empty) of A x B

• Definition. Strings k,r are left-substitutable in a 
language L, if, for all strings w defined over Σ∗,
kw∈L iff rw ∈L

• Fact. Left-substitutability is an equivalence 
relation (reflexive, transitive, symmetric)

• Definition. An equivalence relation over Σ is
finite rank if it divides Σ into finitely many 
equivalence classes

• Definition. A binary relation R is called right-
invariant if, for all p,r ∈ Σ∗, pRr⇒ pwRrw
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And formally…

• Fact. A right-invariant relation R is an 
equivalence relation

• Theorem (Myhill-Nerode, 1956)
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Theorem (Myhill-Nerode, 1956).

• Let L⊆Σ∗.  Then the following 3 propositions 
are equivalent:

1. L is generated (accepted) by some finite-
state automaton (finite transition network);

2. L is the union of certain equivalence classes 
of a right-invariant equivalence relation of 
finite rank

3. Let the equivalence relation R be defined as 
follows: xRy iff x and y are left-substitutable
in L. Then this relation R is of finite-rank and 
is right-invariant [this is Wells’ definition]
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Finite # of bins = finite state

• Gives easy way to show what is not finite-state
• Eg, ancbn, for all n> 0
• Proof by contradiction.

Suppose there was such an FSA.  By the theorem, 
this FSA is of finite rank, and classifies all strings in 
Σ∗ into one of a finite number of classes.

By the pigeonhole principle, there must exist some
string ai s.t. aj with j ≠ i is in the same equivalence 
class as ai . But then the fsa must recognize both
ai c aj and ai c ai , a contradiction
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Why not fsa’s forever?

• Can’t yield the right set of strings= weak
generative capacity (antiantimissle…)

• Can’t yield the right set of structures = 
strong generative capacity (dark blue 
sky)

• How do these failures show up?
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A more complex fsa
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Conversion to deterministic 
machine

0 1
the

2,3

4,8

7

11

12
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What are we missing here?
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We are missing the symmetry
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Having a poor representation…

• Shows up in having duplicated states (with no 
other connection to each other)

• System would be ‘just as complex’= have the 
same size (what is size of automaton?) even if 
the network were not symmetric

• So we have failed to capture this regularity & 
the network could be compressed

• How?
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Compressability reveals rendundancy
(pattern)that we have missed

Active:

+
Rule that flips network=

Passive:

Aka “transformational grammar”
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But it’s worse than that… more 
redundancy even so 

the guy

Bush Bush

the guysaw

So, obvious programming approach:
use a subroutine
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Subnetworks as subroutines, to 
compress the description

the guy

Bush Bush

the guysaw

saw

the guy

Bush

Sentence:

Noun
phrase: “splice out” common

subnets
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Could be worse…
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Could be raining…
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It could be even worse…
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Examples

NPVerb

VPNP

S

A roller coaster thrills every teenager

Verb → thrills
VP→ Verb NP
S → NP VP
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The notion of a common
subnetwork

• Equivalent to the notion of a phrase
• A Noun Phrase  (NP)
• Defined by substitution class of a sequence of

words (aka “a constituent”) - extension
beyond substitution of single words

• A phrase iff we can interchangeably substitute 
that sequence of words regardless of context 

• So also gives us the notion of a context-free
grammar (CFG)
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Constituents, aka phrases

• Building blocks that are units of words 
concatenated together

• Why?
• Ans:
1. They act together (i.e., behave alike 

under operations) - what operations?
2. Succinctness
3. (Apparently) nonadjacent constraints
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The deepest lesson

• Claim: all apparently nonadjacent 
relationships in languge can be reduced to 
adjacent ones via projection to a new 
level of representation

• (In one sense, vacuous; in another, deep)
• Example: Subject-Verb agreement 

(agreement generally)
• Example: so-called wh-movement
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Gaps (“deep” grammar!)

• Pretend “kiss” is a pure transitive verb.
• Is “the president kissed” grammatical?

• If so, what type of phrase is it?

• the sandwich that
• I wonder what 
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle
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Examples

• The guy that we know in Somerville likes ice-
cream

• Who did the guy who lives in Somerville see 
__?

S

NP+sing VP+sing

SThe guy

that we know in Som.

V NP
likes

ice-cream
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The deep reason why

• Machinery of the mind: based only on 
concatenation of adjacent elements - not
on ‘counting’ eg., “take the 7th element & 
move it…”

• Runs through all of linguistic 
representations (stress, metrical patterns, 
phonology, syntax, …)

• Strong constraint on what we have to 
represent
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Constituents

• Basic ‘is-a’ relation
• Act as ‘whole units’ -

• I want this student to solve the problem 
• ?? Student, I want this to solve the problem
• This student, I want to solve the problem

• Sometimes, we don’t see whole constituents…book 
titles (claimed as objection to constituency):
• Sometimes a Great Notion
• The Fire Next Time

• Why might that be?


