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Abstract 

 
In this paper, we propose a framework to detect 
interactions between two objects in far-field visual 
surveillance. A set of simple interactions are first defined 
using trajectory analysis, which allows the description of 
long-range interactions based on the knowledge on the 
history of object movements. Complicated interactions 
are composed of simple interactions using the interval 
temporal logic. Two approaches are proposed to detect 
abnormal and intentional interactions. In the first 
approach, trajectories with attributes are extracted as 
features to describe interactions. Using a novel trajectory 
similarity measure, the similarity between two 
interactions is defined. Abnormal interactions are 
detected as outlier samples of the interaction set. In the 
second approach, the activity of each object is modeled 
as a Hidden Markov Model (HMM). We detect intentional 
interactions, by computing the mutual information 
between the two HMMs.    
 
1. Introduction 
 

In far-field visual surveillance, people often have 
interests in the automatic interpretation of object 
interactions, especially some abnormal interactions. In 
far-field visual surveillance, because of the low resolution 
of the acquired imagery, there is no enough information 
on the internal configuration of objects and the interaction 
description is mainly based on the object movement. 
Consider two scenarios as examples: (A) “A car was 
intentionally following another car”; (B) “A car dropped 
off a person. The person didn’t enter the building, but 
entered another car.”  Usually, there are two approaches 
to detect interesting interactions. In the first approach, all 
kinds of interactions are clustered and abnormal 
interactions are detected as outlier samples  [1] [8]. The 
disadvantage is that it cannot give semantic interpretation 
to the detected abnormal interactions. The second 
approach builds a model for each kind of interaction to be 
detected  [3] [4] [5]. It has a semantic interpretation to the 
detected interactions. However, it is not a general 
framework and can only be applied to specific 
applications. Furthermore, people are often interested in 
unexpected abnormal interactions. It is difficult to collect 
their training samples, or to give the explicit logical 
description.  

We propose a framework with two levels of 
interaction description. In the level of general description, 
a set of basic interaction types using trajectory analysis 
and interval temporal logic  [6] has been defined. They 
cover most of the interactions in far-field visual 
surveillance. In a more detailed description, for each type 
of interactions, we further compare the similarity between 
interactions, and detect abnormal or intentional 
interactions. For example, in scenarios (A) and (B) 
mentioned above, we first recognize the interactions as 
follow and drop-off, and then detect them as intentional 
follow and abnormal drop-off.  

Most of the previous approaches  [3] [7] define object 
interactions in far-field visual surveillance based on the 
velocity of objects and relative distance between objects.  
However, these properties are not enough for the 
detection of some long-range interactions, which need the 
knowledge on the history of object movement.  For 
example, the follow interaction can be detected based on 
the positions and moving directions of objects in Figure 
1(a). However, in Figure 1(b), in order to decide whether 
one car is following the other, their movement history has 
to be considered. The later case is often of interest. If one 
car is intentionally following another car, it will try to 
keep some distance to its aim avoiding to be noticed. We 
define this kind of long-range interactions by analyzing 
the trajectories of the two objects, which encode the 
historical information of object movement.  

 

 
                       (a)                                        (b) 
Figure 1. Examples of the follow interactions. The follow 
in (a) can be detected based on the moving directions of 
the two cars. In order to detect follow in (b), history of 
object movement has to be considered.  
 

     We develop two approaches to detect abnormal and 
intentional interactions for any type of interactions. In the 
first approach, we define the similarity between 
interactions and detect abnormal interactions as outlier 
samples. Since interactions have been classified into 
different types, we can extract proper features for each 



type of interactions differently instead of using some 
uniform features as in  [1]. We extract trajectories with 
attributes as features to represent interactions. Using a 
novel trajectory similarity measure, the interaction 
similarity is computed. For example, most of the follow 
interactions between cars happen just because they are on 
the same road. They have no intention at all. However, 
we may suspect an intentional follow, if one car still 
follows another car even after it has changed several 
roads. The trajectory of this follow is very different with 
those of normal follow.  As another example, we 
represent drop-off as the trajectory of the car before stop 
and the trajectory of the people after getting out of the car. 
In scenario (B), since most of the people enter the 
building after getting out of the car, while this person 
entered another car, his trajectory is different from others. 

     In the second approach, we model the activity of each 
object as a Hidden Markov Model (HMM), and compute 
the mutual information between two HMMs. If the 
interaction between two objects is intentional, the hidden 
state of one object will affect the state transition of the 
other object, and the mutual information between two 
HMMs is high. Consider the follow example again. If one 
object changes its speed according to the speed of the 
other object during the follow interaction, this is an 
intentional follow.  

     The contribution of this paper can be summarized as 
fourfold. First, a two-level interaction detection 
framework is proposed. Second, we detect the long-range 
interactions by trajectory analysis. Third, we extract a 
proper set of trajectories as features to represent each type 
of interactions. Using a novel trajectory similarity 
measure, the similarity between interactions is defined. 
Abnormal interactions are detected as outlier samples by 
comparing interactions. Fourth, the intentional interaction 
is detected by computing the mutual information between 
HMMs. The paper is organized as following. Some 
related work is reviewed in Section 2. In Section 3, a set 
of simple interactions are defined and they are extended 
to complicated interactions using interval temporal logic 
in Section 4. Abnormal and intentional interactions 
detection by computing the interaction similarity and 
mutual information between HMMs are described in 
Section 5 and 6. Section 7 is conclusion and discussion. 
 
2. Related Work 
 
   One possible approach to learn the activity is to cluster 
all kinds of interactions and then abnormal interactions 
can be detected as outlier samples  [1] [8] [10]. 

    A. R. Chowdhury and R. Chellappa  [8] have 
represented the activity by the deformations of the point 
configuration in a shape space. Basis shapes have been 

learned for each activity based on the 2-D trajectories, 
and then unknown activity can be projected onto these 
basis shapes to be recognized as a normal activity or an 
abnormal activity. 

      H. Zhong and J. Shi  [1] divided the video into equal 
length segments and used motion feature to extract 
prototypes, then computed the prototype-segment co-
occurrence matrix and found the correspondence 
relationship between prototypes and segments through 
co-embedding. Then abnormal activities are defined as 
the video segments that have correspondences to 
distinctive important features. 

F. Porikli and T. Haga  [10] used time-wise and 
object-wise features to apply principal component 
analysis on the feature-wise affinity matrices to obtain 
object clusters and then to detect abnormal activities. As 
mentioned before, these kinds of methods cannot give 
semantic interpretation to the detected abnormal activities. 

      Another possible method is to extract the trajectories 
followed by a supervised learning. W. Grimson et al  [9] 
estimated a hierarchy of similar distributions of activities 
based on the co-occurrence feature clustering. Starner  [11] 
used a Hidden Markov Model (HMM) to represent a 
simple event and recognize this event by computing the 
probability that the model produce the visual observation 
sequence. Town  [12] proposed to use a Bayesian 
Networks for event recognition. Kohler [7] and Hongeng 
 [3] detect interactions based on the velocity and relative 
distance between objects. As mentioned in Introduction, 
they cannot detect the “follow” interaction in Figure 1(b). 
Fernyhough et al  [13] constructed qualitative event 
models to detect follow and overtake. They could detect 
interactions only when two objects are close in space and 
required to learn the path regions from long-term 
observation in advance. Weghe et al  [14] tried to detect 
the long-range interactions using “Qualitative Trajectory 
Calculus along a road Network” (QTCN). However, they 
also needed a road map which is often unavailable in 
visual surveillance.  Since both of the two approaches 
relied on the knowledge of scene structure, they will fail 
if objects goes out of roads or regular paths. 

Our method is also a supervised learning method. 
However, we use a two-level framework for interaction 
description which allows to define the long range 
interaction by trajectory analysis, then abnormal 
interactions can be detected by comparing interactions 
using the proposed trajectory similarity measure. In this 
paper, we use the Stauffer-Grimson tracker  [15] to detect 
and track moving objects in the scene. Scene clutter is 
filtered in a preprocessing step. 

 
 
 



3. Simple Interaction 
 

Neumann  [16] developed a list of motion verbs to 
provide natural language description of activities. We 
select a small subset of terms to define the basic types of 
interactions between two objects in far-field visual 
surveillance as shown in Table 1. This set can be further 
extended in practical applications. However, in this paper, 
we just use it as example to explain how this framework 
works.  In this section, we first define simple interactions 
and extend them to complicated interactions using 
interval temporal logic in the next section. 

Table 1.  Interactions between two objects. 
 

 Independent of history 
of movement 

Depend on history 
of movement 

Simple 
interactions 

approach 
meet 
leave 
pass 

follow 
followed-by 

follow-approach 
go-alongside 

Complicated 
interactions 

return 
drop-off 
pick-up 

park-leave 
drive-leave 

lurk 

catch-up 
over-take 

cross 

 
As mentioned in the Introduction, some interactions 

can be defined only based on the velocities, positions, and 
relative distance of objects. For example, if we use 

 to represent the relative distance between two 
objects A and B at time t, the approach interaction is 
defined as, 

( tBAd ,, )

( ) ( ) 0/,,,, <∂∂⇒ ttBAdtBAapproach .        (1) 

Since there have been a lot of work  [3] [7] on this kind of 
interaction definitions, we will not discuss much about it 
in this paper. We will focus on the long-range interactions, 
whose definition needs the knowledge on the history of 
object movement. We solve this problem by analyzing 
object trajectories which encode the information of 
movement history. 

3.1. Define interaction by trajectory analysis 
 
     The trajectory of an object A is represented by a 
sequence of observations, { }NsaAtraj s ,,1)( …== . N is 
the number of observations sampled along the trajectory. 
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     First consider the follow interaction. We define “A 
follows B” as: A passes through the same position where 
B passed some time before, and A has the same moving 
direction as B on that position. This definition can be 
easily formulated by analyzing the trajectories of A and B. 
As shown in Figure 2, for an observation sa  on trajectory 

A, we find its nearest observation  in space on 

trajectory B, where 
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The time delay between the two objects when passing 
through the same position is computed as, 
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The follow interaction is formulated as, 
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where η  and α  are the threshold parameters.  

     Followed-by, go-alongside and follow-approach are 
defined in the similar way, 
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     In summary, two objects have interaction when their 
trajectories are close enough, and the interaction type is 
recognized by comparing the time delay when they pass 
through the same position. In Figure 3, object A is 
following object B at a higher speed on the road. 
However, A and B are moving in opposite direction and 
their spatial distance is increasing at that moment. Only 
using spatial distance and velocity, follow and follow-



approach cannot be detected. They can be detected from 
the fact that the time delay is positive and decreasing. The 
scene structure information, which is implicitly encoded 
in the trajectories of object movement, is utilized in our 
interaction recognition. However, our method does not 
require the map of the scene.   
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Figure 3. Object A is following object B a
on the road, but they are moving in opp
and their spatial distance is increasing. T
this follow interaction needs the knowled
structure, which is implicitly encoded in
of the two objects. 
 
3.2. Experiment 
 
       Figure 4 (a)-(e) are some examples 
follow interactions in two scenes. Object A
red window, is following object B mark
window. The trajectories of A and B are
and cyan color. The blue color indica
trajectory A where follow happens. Figure 
normal short-range follow interactions, wh
detected by the methods in  [3] [7]. Figur
two long-range follow interactions, in 
objects are in large distance and mo
directions. They cannot be detected o
velocities and positions of the objects. In
drops a bag on the ground and keeps 
follows B for a while, picks up the bag, an
different direction. In this example, follo
on some part of the trajectory.  In Figure 4

two cars come from another road, and make a turn when 
coming to the main road in the scene.   In Figure 4(e)(f), 
we plot the trajectories of follow interactions happening 
in two video sequences of the two scenes. In Scene 1, 
most of the follow interactions happen when cars make u-
turn to enter the parking lot, people cross the parking lot, 
and pedestrians walk on the path on the top right of the 
scene. In Scene 2, follow interactions happens when cars 
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                    (a)                                            (b) 

   
                    (c)                                           (d) 

 
                   (e)                                            (f) 

               Scene 1                                  Scene 2 

Figure 4. Experiment of detecting follow interactions in 
two scenes. (a)-(d) are examples of the detected follow 
interactions in the two scenes. Object A, marked by the 
red window, is following object B marked by the cyan 
window. The trajectories of A and B are marked by red 
and cyan color. The blue color indicates the part of 
trajectory A where follow happens. (e) and (f) plot the 
trajectories of follow interactions happening in two video 
sequences of the two scenes. 
 
4. Complicated Interactions 
 

4.1. Interval temporal logic  
        In  [6], Allen introduces 13 relations between two 
temporal intervals I and J. Seven of them are shown in 
Figure 5. The remaining six converse relations, After, 

B
B A 

A
B

A A 

BB



Metby, OverlappedBy, StartedBy, Contains and 
FinishedBy, are given by exchanging I and J.  
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     We use lurk and drop-off as more examples. Their 
interval temporal logic representations are shown in 
Figure 7 and 8. In the lurk interaction, object A first stops 
and object B is approaching A. When B passes and leaves 
A, A begins to move. After some time, A follows B. Drop-
off is described as: A first moves, and then stops; after 
some time, a new object B appear near A and leaves A. 

4.3. Experiments 
 
      Some experimental results of catch-up, overtake, lurk 
and drop-off detection are shown in Figure 9, 10, 11. We 
call the object marked by the red window A, and the 
object marked by the blue window B. In Figure 9, A 
follows B in frame 14901, and is following and 



approaching B in frame 15002.  A catches up and goes 
alongside with B in frame 15064. In frame 15276, A has 
overtaken B, and is followed by B. Figure 10 is an 
example of lurk detection. In frame 3749, A stops, while 
B is approaching A. In frame 3782, when B comes close 
to A and passes by A, A still stops there.  When B has left 
A some distance, A begins to move in frame 3823. After 
some time, A begins to follow B in frame 3876. Figure 11 
shows an example of drop-off detection. In frame 
1317536, A is moving towards the parking lot, and stops 
in frame 1317600. B appears and leaves A in frame 
1317833 and 1318016.    
  

  
           Frame 14901                           Frame 15002 

  
           Frame 15064                             Frame 15276 

Figure 9. Example of catch-up and overtake detection. 

 

  
            Frame 3749                               Frame 3782 

  
          Frame 3823                               Frame 3876 

Figure 10. Example of lurk detection. 

  
        Frame 1317536                       Frame 1317600 

  
          Frame 1317833                    Frame  1318016 

 
Figure 11. Example of drop-off detection. 

 
5. Abnormal Interaction Detection Based on 
Trajectory Analysis  
 
     In far-field visual surveillance, same interaction 
pattern repeats every day every minute. For example, in a 
restrict parking lot, at the morning rush hour, people 
following each other drive into the parking lot, park, 
leave the car and finally disappear at some building’s 
entrance. For this specific scenario, a lot of follow and 
drop-off happens. Among those usual interactions, we are 
more interested in the abnormal interactions. Given the 
above scenario, one possible abnormal interaction would 
be: After people park their cars, they are expected to go to 
the building entrance and then disappear.  So if one 
person gets out his car, instead of approaching to the 
building, he walks to another vehicle, gets in and drives 
away. This kind of activity will arouse our attention, and 
need to be reported for further examinations. 
 
5.1 Trajectory Analysis 
 
       What are “Abnormal Interactions”? What differ them 
from “Usual Interactions”? “Abnormal Interactions” are 
rare, difficult to describe, hard to predict and can be 
subtle [1]. However, given a large number of 
observations, it is still possible to detect the abnormal 
interactions. The trajectories of abnormal interactions 
must be somehow different from the normal interactions, 
which suggest detecting the abnormal interactions by 
modeling the interactions based on the trajectories. 

      As in Part 3.1 “A follows B” has been defined as:A 
passes through the same position where B passed some 
time before, and A has the same moving direction as B on 



that position. Based on the nature of follow, it can be 
characterized into two categories: unintentional follow (i.e. 
Normal interaction) and intentional follow (i.e. abnormal 
interaction). Unintentional follow, which happens a lot, is 
just that people or vehicle passes the same location in the 
order due to the nature of traffic. The follower only 
“follows” the followee for a short length, and then divides 
for its own destination. On the other hand, intentional 
follow is that the follower will follow the followee all the 
way down, which interests us and need to be detected. As 
shown in Fig. 12. There are three trajectories, A (in blue), 
B (in green), C (in red) respectively. It is already been 
detected that “B follows A” and “C follows A”.  
Apparently “B follows A” is more intentional than “C 
follows A”. 

 
Figure 12 Examples of follow 

 
      In order to distinguish the abnormal interactions from 
normal interactions, we must define a similarity criterion 
which measures the degree of similarity between any two 
trajectories. 

     As described in Part 3.1, the trajectory of an object A 
is represented by a sequence of observations, 

{ }NsaAtraj s ,,1)( …== . N is the number of 
observations sampled along the trajectory. 
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The symmetric distance which is the similarity between A 
and B is defined as: 

( ) ( ) ( )( ABhBAhBAH ,,,max, = )                (12) 

      Now we can detect abnormal interactions as the 
outliers [1] [8] [10].  In specific, given an unknown 
activity, first based on the criterions, which are described 
in Part3 and Part 4, to check what kind of interaction it is, 
and then use the similarity measurement to check if it is a 
normal interaction or an abnormal interaction. The 
advantage of this approach is that for an unknown 
interaction, we can tell if it is an abnormal interaction, as 
well as the semantic interpretation to it. 

5.2 Simulated Experiment 
      We tested this algorithm on a simulated network. This 
simulator synthetically generates the traffic flow in a set 
of city streets, allowing for stop signs, traffic lights, and 
differences in traffic volume (i.e. morning rush hours and 

 

AB 

C

(a) Detected Follows, the width of the trajectories is 
proportional to the frequency of the detected follow at that 
location. 

 
(b) The detected most intentional follow trajectories (in 

red).  
Figure 13 Intentional follow detection results. 

afternoon rush hours have a higher volume). The network 
includes 110 cameras which are located at roads 
intersections (including cross and T intersections). For 
each camera, there are two observers that look in the 
opposite directions of the traffic flow (i.e. Observer 1 and 



2 belong to camera 1, Observer 3 and 4 belong to camera 
2, etc). Tracking data has been simulated 24 hours every 
day for 7 days. 

We have used 2 hour data (8am to 9am) every day for 
7 days to detect the intentional follow. The criterion to 
detect follow is as same as described as Equ. (5). The 
length of follow is defined by the number of observers the 
follower and followee have passed by. For Fig.13 (a), the 
threshold for the length of follow is 4. The width of the 
plotted trajectories is proportional to the frequency of the 
detected follows at that location.  From Fig.13 (a), we can 
see that there are a lot of follows have been detected, 
especially, in the heavy traffic area (i.e. at the lower part 
of the map). Then, the outlier samples of those follows are 
detected, as shown in (b), the most intentional follow 
trajectories are actually not in the heavy “follow” zone. 

 
6. Abnormal Interaction Detection Using 
Mutual Information of HMMs 
 
6.1. Mutual information of HMMs  
 
       Another approach to detect intentional interactions is 
to model the activities of two objects as HMMs and 
compute the mutual information between HMMs. If the 
two objects have intentional interaction, the state of one 
object will affect the state change of the other object, the 
mutual information between the two HMMs should be 
high, otherwise the two objects will change their states 
independently and their mutual information is low. 

     We model the joint probability distribution of two 
objects A, B as coupled HMM , 

where  and  are two observation sequences of A 
and B, and 
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However, it is time consuming. From two observed 
sequences  and , we learn parameters using the 
maximum likelihood,  
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Bθ , and Cθ , the directly estimate  by comparing 
the maximum likelihoods, 
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      Since when there is on intentional interaction between 
two objects, the conditional probability of the hidden state 
of one chain is independent of the hidden state of the 
other chain, we can also estimate  by observing 
the transition probability matrix, 
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Here, we assume that there only two sates for each chain.     
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imulation experiment  

 the normal cases, when one object follows another 
t without intention, the two objects will change their 
 independently without effect on each other. 
ver, if A is intentionally following B, A will change 
eed according to the speed variation of B. If B 
s up, A will accelerate after a short time in order to 
the track of B. If B starts to move at a low speed, A 
lso gradually slow down avoiding being noticed by 
is process is simulated in Figure 15. Using the speed 
ions along time as observation sequences, the data 
s of the two objects are modeled as coupled HMMs. 

ransition probabilities of the coupled HMMs are 
 in Table 2. We can observe that: (1) the 

tional probability of the hidden state of B at time t is 
t completely decided by the hidden state of B at the 
us time t-1, and it is little affected by the hidden 
of A at time t-1, so B freely changes its speed 
endent of A. (2) the conditional probability of the 
n state of A depends on not only its own hidden 
t t-1, but also the hidden state of B at t-1. So there 
tentional interaction between A and B. The 
dences of the two data streams computed using Eq. 
nd Eq. (16) are 19.7 and  0.9520 respectively. 

r comparison, we simulate two independent speed 
ions as shown in Figure 16, and also build the 
ed HMMs. The transition probabilities of the 
ed HMMs are shown in Table 3. For each object, 
nditional probability of the hidden state at time t 

depends on its own hidden state at t-1, while is 
endent of the hidden state of the other object at t-1. 
ere is no intentional interaction between the two 
ts. The dependences of the two data streams 
uted using Eq. (15)  and Eq. (16) are 1.6956 and  
 respectively, much smaller than those compute 
the data in Figure 15. 

 

t =1 t =2 t =N-1 t =N

Figure 15. Speed variations of two objects in a simulated 
intentional follow. Object B freely change its speed. 
Object A is intentionally following B. A changes its speed 
according to the speed variation of B.  
 
Table 2. Transition probabilities of coupled HMMs 
modeling the data shown in Figure 13. A is intentionally 
following B.  
 

 1=A
ts  2=A

ts
 

1=B
ts

 
2=B

ts
 

11 =−
A
ts , 11 =−

B
ts 1 0 0.985 0.015 

11 =−
A
ts , 21 =−

B
ts 0.765 0.235 0 1 

21 =−
A
ts , 11 =−

B
ts 0.182 0.818 1 0 

21 =−
A
ts , 21 =−

B
ts 0 1 0.044 0.956 

 
 

 
Figure 16. Speed variations of two objects which change 
their speed independently. 
 
 
 
 



Table 3. Transition probabilities of coupled HMMs 
modeling the data shown in Figure 14. The two object 
independently change their speed. 
 

 1=A
ts  2=A

ts
 

1=B
ts

 
2=B

ts
 

11 =−
A
ts ,  11 =−

B
ts 0.960 0.040 0.980 0.020 

11 =−
A
ts ,  21 =−

B
ts 0.966 0.034 0.017 0.983 

21 =−
A
ts ,  11 =−

B
ts 0.014 0.986 0.944 0.056 

21 =−
A
ts ,  21 =−

B
ts 0.014 0.986 0.061 0.939 

 
 
7. Conclusion 
 
In this paper, we propose a framework to detect 
interactions in far-field visual surveillance. Long-range 
interactions are described using trajectory analysis. 
Trajectories are extracted as features to represent 
interactions. Using a novel trajectory similarity measure, 
the similarity between interactions is computed. 
Abnormal interactions are detected as outlier samples by 
comparing interactions. Modeling the activities of objects 
as HMMs, intentional interactions are detected by 
computing the mutual information between HMMs. 
Because of the difficulty of data collection, in this work, 
we use some simulation data for experiments of abnormal 
and intentional interaction detection. In the future work, 
we will try to work on some real scenarios.    
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