Administrivia

- Send email to be added to course mailing list. Critical!
- Sign up for scribing.
- Pset 1 out today. First part due in a week, second in two weeks.
- Course under perpetual development!
 Limited staffing. Patience and constructive criticism appreciated.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Hamming's Solution - 1

- Break (32-bit) word into four blocks of size 7 each (discard four remaining bits).
- In each block apply a transform that maps
 4 "real" bits into a 7 bit string, so that any
 1 bit flip in a block can be corrected.
- How? Will show next.
- Result: Can now store 16 "real" bits per word this way. Efficiency already up to $\frac{1}{2}$.

Hamming's Problem (1940s)

- Magnetic storage devices are prone to making errors.
- How to store information (32 bit words) so that any 1 bit flip (in any word) can be corrected?
- Simple solution:
 - Repeat every bit three times.
 - Works. To correct 1 bit flip error, take majority vote for each bit.
 - Can store 10 "real" bits per word this way. Efficiency of storage $\approx 1/3$. Can we do better?

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

- [7,4,3]-Hamming code
- Will explain notation later.
- Let

- Encode $\mathbf{b} = \langle b_0 b_1 b_2 b_3 \rangle$ as $\mathbf{b} \cdot G$.
- Claim: If $a \neq b$, then $a \cdot G$ and $b \cdot G$ differ in at least 3 coordinates.
- Will defer proof of claim.

Hamming's Notions

- Since codewords (i.e., $b \cdot G$) differ in at least 3 coordinates, can correct one error.
- Motivates Hamming distance, Hamming weight, Error-correcting codes etc.
- Alphabet Σ of size q. Ambient space, Σ^n : Includes codewords and their corruptions.
- Hamming distance between strings $\mathbf{x}, \mathbf{y} \in \Sigma^n$, denoted $\Delta(\mathbf{x}, \mathbf{y})$, is # of coordinates i s.t. $x_i \neq y_i$. (Converts ambient space into metric space.)
- Hamming weight of z, denoted wt(z), is # coordinate where z is non-zero.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

_

Hamming notions (contd.)

Code: Subset $C \subseteq \Sigma^n$.

Min. distance: Denoted $\Delta(C)$, is $\min_{\mathbf{x} \neq \mathbf{y} \in C} \{\Delta(\mathbf{x}, \mathbf{y})\}.$

- e **error detecting code** If up to e errors happen, then codeword does not mutate into any other code.
- t error-correcting code If up to t errors happen, then codeword is uniquely determined (as the unique word within distance t from the received word).

Proposition: C has min. dist. $2t + 1 \Leftrightarrow$ it is 2t error-detecting \Leftrightarrow it is t error-correcting.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

.

Standard notation/terminology

- q: Alphabet size
- n: Block length
- k: Message length, where $|C| = q^k$.
- d: Min. distance of code.
- Code with above is an $(n,k,d)_q$ code. $[n,k,d]_q \mbox{ code if linear. Omit } q \mbox{ if } q=2.$
- k/n: Rate
- d/n: Relative distance.

Back to Hamming code

- So we have an [7,4,3] code (modulo proof of claim).
- Can correct 1 bit error.
- Storage efficiency (rate) approaches 4/7 (as word size approached ∞).
- Will do better, by looking at proof of claim.

Proof of Claim

$$Let H = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

- Sub-Claim 1: $\{xG|x\} = \{y|y \cdot H = 0\}$. Simple linear algebra (mod 2). You'll prove this as part of Pset 1.
- Sub-claim 2: Exist codewords $\mathbf{z}_1 \neq \mathbf{z}_1$ s.t. $\Delta(\mathbf{z}_1, \mathbf{z}_2) \leq 2$ iff exists \mathbf{y} of weight at most 2 s.t. $\mathbf{y} \cdot H = 0$.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Generalizing Hamming codes

• Important feature: Parity check matrix should not have identical rows. But then can do this for every ℓ .

$$H_{\ell} = \begin{bmatrix} 0 & \cdots & 0 & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 1 & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 1 & \cdots & 1 & 1 & 1 \end{bmatrix}$$

- ullet H_ℓ has ℓ columns, and $2^{\ell-1}$ rows.
- ullet H_ℓ : Parity check matrix of ℓ th Hamming code.
- Message length of code = exercise. Implies rate $\rightarrow 1$.

Summary of Hamming's paper (1950)

• Let \mathbf{h}_i be *i*th row of H. Then $\mathbf{y} \cdot H =$

• Let y have weight 2 and say $y_i = y_j = 1$.

Then $\mathbf{y} \cdot H = \mathbf{h}_i + \mathbf{h}_j$. But this is non-zero

 $\sum_{i|y_i=1} \mathbf{h}_i$.

since $\mathbf{h}_i \neq \mathbf{h}_i$. QED.

- Defined Hamming metric and codes.
- Gave codes with d = 1, 2, 3, 4!
- ullet d=2: Parity check code.
- d=3: We've seen.
- d = 4?
- Gave a tightness result: His codes have maximum number of codewords. "Lower bound".
- Gave decoding "procedure".

Volume Bound

- Hamming Ball: $B(x,r) = \{w \in \{0,1\}^n \mid \Delta(w,x) \leq r\}.$
- Volume: $\operatorname{Vol}(r,n) = |B(x,r)|$. (Notice volume independent of x and Σ , given $|\Sigma| = q$.)
- Hamming(/Volume/Packing) Bound:
 - Basic Idea: Balls of radius t around codewords of a t-error correcting code don't intersect.
 - Quantitatively: $2^k \cdot \operatorname{Vol}(t, n) \leq 2^n$.
 - For t=1, get $2^k\cdot (n+1)\leq 2^n$ or $k\leq n-\log_2(n+1).$

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

13

 Proves Hamming codes are optimal, when they exist.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Decoding the Hamming code

- Can recognize codewords? Yes multiply by H_{ℓ} and see if 0.
- What happens if we send codeword c and *i*th bit gets flipped?
- Received vector $\mathbf{r} = \mathbf{c} + \mathbf{e}_i$.
- $$\begin{split} \bullet & \ \mathbf{r} \cdot H = \mathbf{c} \cdot H + \mathbf{e}_i \cdot H \\ &= 0 + \mathbf{h}_i \\ &= \mathsf{binary representation of} \ i. \end{split}$$
- $\mathbf{r} \cdot H$ gives binary rep'n of error coordinate!

Rest of the course

- More history!
- More codes (larger d).
- More lower bounds (will see other methods).
- More algorithms decode less simple codes.
- More applications: Modern connections to theoretical CS.

Applications of error-correcting codes

- Obvious: Communication/Storage.
- Algorithms: Useful data structures.
- ullet Complexity: Pseudorandomness (ϵ -biased spaces, t-wise independent spaces), Hardness amplification, PCPs.
- Cryptography: Secret sharing, Cryptoschemes.
- Central object in extremal combinatorics: relates to extractors, expanders, etc.
- Recreational Math.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895