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Today 

•	 More on Shannon’s theory 

− Proof of converse.

− Few words on generality.

− Contrast with Hamming theory.


•	 Back to error-correcting codes: Goals. 

•	 Tools: 

− Probability theory:

− Algebra: Finite fields, Linear spaces.
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Proof of Converse Coding Theorem 

n•	 Intuition: For message m, let Sm � {0, 1}

be the set of received words that decode to 
m. (Sm = D−1(m)). 

•	 Average size of D(m) = 2n−k . 

•	 Volume of disc of radius pn around E(m) 
is 2H(p)n . 

• Intuition: If volume ≤ 2n−k can’t have this 
ball decoding to m — but we need to! 

•	 Formalize? 
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Proof of Converse Coding Theorem

(contd.)


Prob. [correct decoding ] 
n = 

� 
� � {0, 1} Pr[m sent, � error and 

m�{0,1}k 

� 
� 

Pr[� error] + 2−k · 
��B(p�n,n) � ��B(p�n,n) m 

)n ·
�

� exp(−n) + 2−k−H(p � Im,� 

Let Im,� be the indicator variable that is 1 iff m,� 

)n · 2nD((E(m) + �)) = m.	 = exp(−n) + 2−k−H(p �

� exp(−n) 

Let p� < p be such that R > 1 − H(p�). 
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Generalizations of Shannon’s theorem 

•	 Channels more general 

−	 Input symbols �, Output symbols 
�, where both may be infinite 
(reals/complexes). 

−	 Channel given by its probability transition 
matrix P = P�,�. 

−	 Channel need not be independent - could 
be Markovian (remembers finite amount 
of state in determining next error bit). 

•	 In almost all cases: random coding + mld 
works. 

•	 Always non-constructive. 
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Contrast between Hamming and 
Shannon 

•	 Works intertwined in time. 

•	 Hamming’s work focusses on distance, and 
image of E. 

•	 Shannon’s work focusses on probabilities 
only (no mention of distance) and E, D 
but not properties of image of E. 

•	 Hamming’s results more constructive, 
definitions less so. 

•	 Shannon’s results not constructive, though 
definitions beg constructivitty. 
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Some of the main contributions


•	 Rigorous Definition of elusive concepts: 
Information, Randomness. 

•	 Mathematical tools: Entropy, Mutual 
information, Relative entropy. 

•	 Theorems: Coding theorem, converse. 

•	 Emphasis on the “feasible” as opposed to 
“done”. 
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•	 Most important difference: modelling of 
error — adversarial vs. probabilistic. 
Accounts for the huge difference in our 
ability to analyze one while having gaps in 
the other. 

•	 Nevertheless good to build Hamming like 
codes, even when trying to solve the 
Shannon problem. 
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Our focus


•	 Codes, and associated encoding and 
decoding functions. 

•	 Distance is not the only measure, but we 
will say what we can about it. 

•	 Code parameters: n, k, d, q; 

•	 typical goal: given three optimize fourth. 

•	 Coarser goal: consider only R = k/n, � = 
d/n and q and given two, optimize the 
third. 

•	 In particular, can we get R, � > 0 for 
constant q? 
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Tools 

•	 Probability tools: 

− Linearity of expections, Union bound. 
− Expectation of product of independent 

r.v.s 
−	 Tail inqualities: Markov, Chebychev, 

Chernoff. 

•	 Algebra 

− Finite fields.

− Vector spaces over finite fields.


•	 Elementary combinatorics and algorithmics. 
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• Will combine with analysis of encoding 
complexity and decoding complexity. 
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Finite fields and linear error-correcting 
codes 

•	 Field: algebraic structure with addition, 
multiplication, both commutative and 
associative with inverses, and multiplication] 
distributive over addition. 

•	 Finite field: Number of elements finite. 
Well known fact: field exists iff size is a 
prime power. See lecture notes on algebra 
for further details. Denote field of size q by 
Fq. 

•	 Vector spaces: V defined over a field F. 
Addition of vectors, multiplication of vector 
with “scalar” (i.e., field element) is defined, 

c�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 12 c



c

and finally an inner product (product of two 
vectors yielding a scalar is defined). 

•	 If alphabet is a field, then ambient space 
�n becomes a vector space Fn .q 

•	 If a code forms a vector space within F
n 
q 

then it is a linear code. Denoted [n, k, d]q 

code. 
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Example: Dual of Hamming codes 

•	 Message m = ∈m1, . . . ,mσ�. 

•	 Encoding given by ∈∈m,x�� . 
x�F

� −02

•	 Fact: (will prove later): m ⊆= 0 implies 
Prx[∈∈m,x� = 0] = 1 

2 

• Implies dual of [2σ − 1, 2σ − � − 1, 3]2 

Hamming code is a [2σ − 1, �, 2σ−1] code. 

•	 Often called the simplex code or the 
Hadamard code. (If we add a coordinate 
that is zero to all coordinates, and write 0s 
as −1s, then the matrix whose rows are all 
the codewords form a +1/−1 matrix whose 
product with its transpose is a multiple of 
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Why study this category? 

•	 Linear codes are the most common. 

•	 Seem to be as strong as general ones. 

•	 Have succinct specification, efficient 
encoding and efficient error-detecting 
algorithms. Why? (Generator matrix and 
Parity check matrix.) 

•	 Linear algebra provides other useful 
tools: Duals of codes provide interesting 
constructions. 

•	 Dual of linear code is code generated by 
transpose of parity check matrix. 
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the identity matrix. Such matrices are 
called Hadamard matrices, and hence the 
code is called a Hadamard code.) 

•	 Moral of the story: Duals of good codes 
end up being good. No proven reason. 
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Next few lectures


•	 Towards asymptotically good codes: 

−	 Some good codes that are not 
asymptotically good. 

−	 Some compositions that lead to good 
codes. 
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