
c

Today	 The story so far

•	 Algebraic codes

Reed-Solomon Codes •

Reed-Muller Codes •

•	 Hadamard Codes as a special case

The Plotkin Bound •

�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 1

What next

•	 Exploit algebra.

•	 Use it to obtain a family of codes over large
alphabet. (Reed-Solomon)

•	 Will try to reduce alphabet size
algebraically. (Reed-Muller).

•	 Get binary codes - Hadamard codes.

Plotkin Bound. •

�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 3

•	 Hamming defines codes.

Shannon’s results: Motivate need for •
asymptotically good codes (codes with
constant relative minimum distance,
constant rate and constant alphabet).

•	 Have only two constructions:

− Hamming codes: Good Rate but small
distance.

− Random codes: Asymptotically good,
but non-constructive.

c	 2�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Reed-Solomon Codes

•	 Discovered in the context of coding theory
by Reed and Solomon in 1960.

Discovered earlier in the context of block •
designs by Bush. (Hmph!)

•	 Extremely simple codes + analysis.

•	 But can be easily obscured! (See any text
on coding theory!)

c	 4�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 c

c

Definition

•	 RS codes specified by:

− Field Fq.

− Parameters n, k.

− Vector a = √�1, . . . , �n� of distinct

elements in Fq. (Need n � q.)

•	 Encoding as follows:

−	 Associate message m = √m0, . . . ,mk−1�
with polynomial p(x) = m0 +m1x+ +· · ·
mk−1x

k−1 of degree less than k.

− Encoding: p →⊆ √p(�1), . . . , p(�n)�.

•	 Parameters: [n, k, n− k + 1]q code for k �
n � q. Distance follows from: “Non-zero
degree k − 1 polynomial has at most k
roots”. (Hold over all fields? When else?)

�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 5

•	 RS code becomes a [n log n, k log n, n−k+
1]2 code.

•	 Example: k = n − 4, then get approx.
[N,N − 4 log N, 5]2 code.

•	 Hamming/Volume bound: Distance 5 code
must have k � N − 2 log N .

So our defect is at most factor of two worse •
than best possible.

�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 7

The large alphabet issue

•	 Why is it reasonable to have large
alphabets?

•	 In practice: CDs/DVDs think of single byte
as a single symbol. Why is the Hamming
metric right?

•	 Error often bursty! When single bit of
byte is corrupted all nearby symbols also
unreliable. So might as well treat them
together!

•	 Even if we don’t - RS codes are interesting.

•	 Let q = n and write element of Fq as log n
bit string.

c	 6�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Reducing alphabet size: Bivariate
polynomials

•	 Bottleneck in increasing length of code:
Need more distinct elements!

•	 Way around - use more variables.

•	 Example:

− Think of message as m = √mij�i,j<
�

k
as matrix.

− Associate bivariate polynomial p(x, y) of
degree at most

≤
k.

− Evaluate at all points in S × S where
S � Fq.

− Using S = Fq gives n = q2 . Longer!

Distance = ?•

c	 8�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 c

c

Schwartz-Zippel Lemma

Theorem: m-variate polynomial of total
degree d is zero on at most d/ S fraction|	 |
of the inputs in Sm .

•	 Will choose x1, . . . , xm at random from
Sm and argue that random choice gives
zero value with probability at most d/ S .|	 |

Perform induction on m. Base case m = 1 •
clear.

•	 Write polynomial p(x1, . . . , xm) as
p1(x1, . . . , xm−1)x

dm+ lesser degree terms m

in xm.

•	 Pick a1, . . . , am−1 at random from Sm−1 .

�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 9

Schwartz-Zippel Lemma (contd.)

Some myths about the Lemma:

•	 That it is a Lemma: Actually a theorem.

•	 That it is due to Schwartz+Zippel:
Actually used many times in algebra/algebraic
geometry/coding theory before.

•	 That its discovery in theoretical computer
science is due to Schwartz/Zippel
alone: Also discovered by DeMillo+Lipton
independently!

•	 Still nice to have a named object and we
will perpetuate the myth.

�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 11

•	 Prob. p1(a1, . . . , am−1) = 0 at most (d −
dm)/ S by induction. |	 |

•	 Assume above doesn’t happen. Let
g(xm) = p(a1, . . . , am−1, xm). g is a non

zero polynomial of degree dm. Choice
xm = am makes it zero w.p. at most
dm/ S . Else p(a1, . . . , am) = 0.|	 | ≥

•	 Union bound: Prob. of being zero at most
d/ S .|	 |

c	 10�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Back to bivariate polynomials

•	 Bivariate polynomials give [n, k, d] code for
d � n − k − (

≤
k(2q −

≤
k).

•	 Why this strange way of writing it? Need
to see how much worse than n − k it gets.

• Can improve bound to d � n−k−(
≤

k(2q−
2
≤

k) by paying more attention.

•	 So certainly not as good as RS codes. But
do have significantly longer code.

c	 12�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 c

 �

 �

c

m-variate polynomials

•	 n = qm , k = m+� if degree of polynomial
m

�.	 d = (1 − �/q) · n.

Codes called Reed-Muller codes. •

•	 Asymptotically good?

−	 Can’t be. Need m = logq n variables and
constant degree � < q.

m+� = grows as m� - polynomial in − k
m

m, while n = qm grows exponentially in
m.

•	 Coding theorists try � > q, but with
individual degree per variable at most q − 1.
Gives interesting range of parameters (see
exercise), but not asymptotically good.

�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 13

from our perspective. Give similar flavor of
results.

A special case: Hadamard codes

• Let q = 2 and � = 1. Gives [2�, � + 1, 2�−1]2

code.

Variants ... •

− [n, log2 n, n/2] - equidistant code.
− [2n, log2 n, n/2] - code using all rows and

complements.
− [n − 1, log2 n, n/2] - code by assuming

w.l.o.g. first column is all 1’s and deleting
this column.

•	 First is weaker than second and third, but
has additional property. Second is what we
get from polynomials. Third is the dual of
the Hamming code. All essentially same

c	 14�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Plotkin Bound

•	 Given any (n, k, n/2)2] code, k � 1 +
log2 n.

•	 Projection technique: If an (n, k, d)q code
exists, then so does an (n − r, k − r, d)q

code.

•	 Putting them together: k � 1 + log2 n +
n − 2d. Asymptotically, R + 2� � 1 for
binary codes.

c	 c�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 15 �Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 16

