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Today	 The story so far


•	 Algebraic codes 

Reed-Solomon Codes • 

Reed-Muller Codes • 

•	 Hadamard Codes as a special case 

The Plotkin Bound • 
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What next 

•	 Exploit algebra. 

•	 Use it to obtain a family of codes over large 
alphabet. (Reed-Solomon) 

•	 Will try to reduce alphabet size 
algebraically. (Reed-Muller). 

•	 Get binary codes - Hadamard codes. 

Plotkin Bound. • 
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•	 Hamming defines codes. 

Shannon’s results: Motivate need for • 
asymptotically good codes (codes with 
constant relative minimum distance, 
constant rate and constant alphabet). 

•	 Have only two constructions: 

− Hamming codes: Good Rate but small 
distance. 

− Random codes: Asymptotically good, 
but non-constructive. 
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Reed-Solomon Codes 

•	 Discovered in the context of coding theory 
by Reed and Solomon in 1960. 

Discovered earlier in the context of block • 
designs by Bush. (Hmph!) 

•	 Extremely simple codes + analysis. 

•	 But can be easily obscured! (See any text 
on coding theory!) 
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Definition 

•	 RS codes specified by: 

− Field Fq.

− Parameters n, k.

− Vector a = √�1, . . . , �n� of distinct


elements in Fq. (Need n � q.) 

•	 Encoding as follows: 

−	 Associate message m = √m0, . . . ,mk−1�
with polynomial p(x) = m0 +m1x+ +· · ·
mk−1x

k−1 of degree less than k.

− Encoding: p →⊆ √p(�1), . . . , p(�n)�.


•	 Parameters: [n, k, n− k + 1]q code for k � 
n � q. Distance follows from: “Non-zero 
degree k − 1 polynomial has at most k 
roots”. (Hold over all fields? When else?) 
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•	 RS code becomes a [n log n, k log n, n−k+ 
1]2 code. 

•	 Example: k = n − 4, then get approx. 
[N,N − 4 log N, 5]2 code. 

•	 Hamming/Volume bound: Distance 5 code 
must have k � N − 2 log N . 

So our defect is at most factor of two worse • 
than best possible. 
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The large alphabet issue


•	 Why is it reasonable to have large 
alphabets? 

•	 In practice: CDs/DVDs think of single byte 
as a single symbol. Why is the Hamming 
metric right? 

•	 Error often bursty! When single bit of 
byte is corrupted all nearby symbols also 
unreliable. So might as well treat them 
together! 

•	 Even if we don’t - RS codes are interesting. 

•	 Let q = n and write element of Fq as log n 
bit string. 
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Reducing alphabet size: Bivariate 
polynomials 

•	 Bottleneck in increasing length of code: 
Need more distinct elements! 

•	 Way around - use more variables. 

•	 Example: 

− Think of message as m = √mij�i,j<
�

k 
as matrix. 

− Associate bivariate polynomial p(x, y) of 
degree at most 

≤
k. 

− Evaluate at all points in S × S where 
S � Fq. 

− Using S = Fq gives n = q2 . Longer! 

Distance = ?• 

c	 8�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 c



c

Schwartz-Zippel Lemma


Theorem: m-variate polynomial of total 
degree d is zero on at most d/ S fraction|	 |
of the inputs in Sm . 

•	 Will choose x1, . . . , xm at random from 
Sm and argue that random choice gives 
zero value with probability at most d/ S .|	 |

Perform induction on m. Base case m = 1 • 
clear. 

•	 Write polynomial p(x1, . . . , xm) as 
p1(x1, . . . , xm−1)x

dm+ lesser degree terms m


in xm.


•	 Pick a1, . . . , am−1 at random from Sm−1 . 
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Schwartz-Zippel Lemma (contd.) 

Some myths about the Lemma: 

•	 That it is a Lemma: Actually a theorem. 

•	 That it is due to Schwartz+Zippel: 
Actually used many times in algebra/algebraic 
geometry/coding theory before. 

•	 That its discovery in theoretical computer 
science is due to Schwartz/Zippel 
alone: Also discovered by DeMillo+Lipton 
independently! 

•	 Still nice to have a named object and we 
will perpetuate the myth. 
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•	 Prob. p1(a1, . . . , am−1) = 0 at most (d −
dm)/ S by induction. |	 | 

•	 Assume above doesn’t happen. Let 
g(xm) = p(a1, . . . , am−1, xm). g is a non

zero polynomial of degree dm. Choice 
xm = am makes it zero w.p. at most 
dm/ S . Else p(a1, . . . , am) = 0.|	 | ≥

•	 Union bound: Prob. of being zero at most 
d/ S .|	 |

c	 10�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 

Back to bivariate polynomials 

•	 Bivariate polynomials give [n, k, d] code for 
d � n − k − (

≤
k(2q −

≤
k). 

•	 Why this strange way of writing it? Need 
to see how much worse than n − k it gets. 

• Can improve bound to d � n−k−(
≤

k(2q−
2
≤

k) by paying more attention. 

•	 So certainly not as good as RS codes. But 
do have significantly longer code. 
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m-variate polynomials


•	 n = qm , k = m+� if degree of polynomial 
m 

�.	 d = (1 − �/q) · n. 

Codes called Reed-Muller codes. • 

•	 Asymptotically good? 

−	 Can’t be. Need m = logq n variables and 
constant degree � < q. 

m+� = grows as m� - polynomial in − k 
m 

m, while n = qm grows exponentially in 
m. 

•	 Coding theorists try � > q, but with 
individual degree per variable at most q − 1. 
Gives interesting range of parameters (see 
exercise), but not asymptotically good. 
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from our perspective. Give similar flavor of 
results. 

A special case: Hadamard codes


• Let q = 2 and � = 1. Gives [2�, � + 1, 2�−1]2 

code. 

Variants ... • 

− [n, log2 n, n/2] - equidistant code. 
− [2n, log2 n, n/2] - code using all rows and 

complements. 
− [n − 1, log2 n, n/2] - code by assuming 

w.l.o.g. first column is all 1’s and deleting 
this column. 

•	 First is weaker than second and third, but 
has additional property. Second is what we 
get from polynomials. Third is the dual of 
the Hamming code. All essentially same 
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Plotkin Bound 

•	 Given any (n, k, n/2)2] code, k � 1 + 
log2 n. 

•	 Projection technique: If an (n, k, d)q code 
exists, then so does an (n − r, k − r, d)q 

code. 

•	 Putting them together: k � 1 + log2 n + 
n − 2d. Asymptotically, R + 2� � 1 for 
binary codes. 
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