Today

- Algebraic codes
- Reed-Solomon Codes
- Reed-Muller Codes
- Hadamard Codes as a special case
- The Plotkin Bound

- Hamming defines codes.
- Shannon's results: Motivate need for asymptotically good codes (codes with constant relative minimum distance, constant rate and constant alphabet).
- Have only two constructions:
 - Hamming codes: Good Rate but small distance.
 - Random codes: Asymptotically good, but non-constructive.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

1

3

©Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

What next

- Exploit algebra.
- Use it to obtain a family of codes over large alphabet. (Reed-Solomon)
- Will try to reduce alphabet size algebraically. (Reed-Muller).
- Get binary codes Hadamard codes.
- Plotkin Bound.

Reed-Solomon Codes

- Discovered in the context of coding theory by Reed and Solomon in 1960.
- Discovered earlier in the context of block designs by Bush. (Hmph!)
- Extremely simple codes + analysis.
- But can be easily obscured! (See any text on coding theory!)

Definition

The large alphabet issue

- RS codes specified by:
 - Field F_q .
 - Parameters n, k.
 - Vector $\mathbf{a} = \langle \alpha_1, \dots, \alpha_n \rangle$ of distinct elements in \mathbb{F}_q . (Need $n \leq q$.)
- Encoding as follows:
 - Associate message m = ⟨m₀,...,m_{k-1}⟩ with polynomial p(x) = m₀+m₁x+···+ m_{k-1}x^{k-1} of degree less than k.
 Encoding: p ↦ ⟨p(α₁),...,p(α_n)⟩.
- Parameters: [n, k, n − k + 1]_q code for k ≤ n ≤ q. Distance follows from: "Non-zero degree k − 1 polynomial has at most k roots". (Hold over all fields? When else?)

5

7

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

- Why is it reasonable to have large alphabets?
- In practice: CDs/DVDs think of single byte as a single symbol. Why is the Hamming metric right?
- Error often bursty! When single bit of byte is corrupted all nearby symbols also unreliable. So might as well treat them together!
- Even if we don't RS codes are interesting.
- Let q = n and write element of \mathbb{F}_q as $\log n$ bit string.

©Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

- RS code becomes a $[n \log n, k \log n, n-k+1]_2$ code.
- Example: k = n 4, then get approx. $[N, N 4 \log N, 5]_2$ code.
- Hamming/Volume bound: Distance 5 code must have $k \le N 2 \log N$.
- So our defect is at most factor of two worse than best possible.

Reducing alphabet size: Bivariate polynomials

- Bottleneck in increasing length of code: Need more distinct elements!
- Way around use more variables.
- Example:
 - Think of message as $\mathbf{m}=\langle m_{ij}\rangle_{i,j<\sqrt{k}}$ as matrix.
 - Associate bivariate polynomial p(x, y) of degree at most \sqrt{k} .
 - Evaluate at all points in $S \times S$ where $S \subseteq \mathbb{F}_q$.
 - Using $S = \mathbb{F}_q$ gives $n = q^2$. Longer!
- Distance = ?

Schwartz-Zippel Lemma

Theorem: *m*-variate polynomial of total degree d is zero on at most d/|S| fraction of the inputs in S^m .

- Will choose x_1, \ldots, x_m at random from S^m and argue that random choice gives zero value with probability at most d/|S|.
- Perform induction on m. Base case m = 1 clear.
- Write polynomial $p(x_1, \ldots, x_m)$ as $p_1(x_1, \ldots, x_{m-1})x_m^{d_m}$ + lesser degree terms in x_m .
- Pick a_1, \ldots, a_{m-1} at random from S^{m-1} .

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

- Prob. $p_1(a_1, \ldots, a_{m-1}) = 0$ at most $(d d_m)/|S|$ by induction.
- Assume above doesn't happen. Let $g(x_m) = p(a_1, \ldots, a_{m-1}, x_m)$. g is a non-zero polynomial of degree d_m . Choice $x_m = a_m$ makes it zero w.p. at most $d_m/|S|$. Else $p(a_1, \ldots, a_m) \neq 0$.
- Union bound: Prob. of being zero at most d/|S|.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

10

Schwartz-Zippel Lemma (contd.)

Some myths about the Lemma:

- That it is a Lemma: Actually a theorem.
- That it is due to Schwartz+Zippel: Actually used many times in algebra/algebraic geometry/coding theory before.
- That its discovery in theoretical computer science is due to Schwartz/Zippel alone: Also discovered by DeMillo+Lipton independently!
- Still nice to have a named object and we will perpetuate the myth.

Back to bivariate polynomials

- Bivariate polynomials give [n, k, d] code for $d \ge n k (\sqrt{k}(2q \sqrt{k}).$
- Why this strange way of writing it? Need to see how much worse than n k it gets.
- Can improve bound to $d \ge n k (\sqrt{k}(2q 2\sqrt{k}))$ by paying more attention.
- So certainly not as good as RS codes. But do have significantly longer code.

m-variate polynomials

- $n = q^m$, $k = \binom{m+\ell}{m}$ if degree of polynomial ℓ . $d = (1 \ell/q) \cdot n$.
- Codes called Reed-Muller codes.
- Asymptotically good?
 - Can't be. Need $m = \log_q n$ variables and constant degree $\ell < q$.
 - $k = \binom{m+\ell}{m}$ grows as m^{ℓ} polynomial in m, while $n = q^m$ grows exponentially in m.
- Coding theorists try ℓ > q, but with individual degree per variable at most q−1. Gives interesting range of parameters (see exercise), but not asymptotically good.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

from our perspective. Give similar flavor of results.

©Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

A special case: Hadamard codes

- Let q = 2 and $\ell = 1$. Gives $[2^{\ell}, \ell+1, 2^{\ell-1}]_2$ code.
- Variants ...
 - $[n, \log_2 n, n/2]$ equidistant code.
 - $[2n, \log_2 n, n/2]$ code using all rows and complements.
 - $[n 1, \log_2 n, n/2]$ code by assuming w.l.o.g. first column is all 1's and deleting this column.
- First is weaker than second and third, but has additional property. Second is what we get from polynomials. Third is the dual of the Hamming code. All essentially same
- ©Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

14

Plotkin Bound

- Given any $(n, k, n/2)_2$] code, $k \leq 1 + \log_2 n$.
- Projection technique: If an $(n,k,d)_q$ code exists, then so does an $(n-r,k-r,d)_q$ code.
- Putting them together: $k \leq 1 + \log_2 n + n 2d$. Asymptotically, $R + 2\delta \leq 1$ for binary codes.