Lecture 11

Lecturer: Madhu Sudan
Scribe: Anastasios Sidiropoulos

1 Overview

This lecture is focused in comparisons of the following properties/parameters of a code:

- List decoding, vs distance.
- Distance, vs rate.
- List decoding, vs rate.

2 The Plotkin's Bound

Recall that for two binary strings $x, y \in\{0,1\}^{n}$, we denote by $\Delta(x, y)$ the number of positions that x and y differ.

Theorem 1 (Plotkin's Bound) If there exist codewords $c_{1}, c_{2}, \ldots, c_{m} \in\{0,1\}^{n}$, such that for each i, j, with $i \leq j, \Delta\left(c_{i}, c_{j}\right) \geq n / 2$, then $m \leq 2 n$.

Proof Assume that $m>2 n$. We define vectors $\tilde{c}_{1}, \ldots, \tilde{c}_{m} \in\{-1,1\}^{n} \subset \mathbb{R}^{n}$, such that for each i, with $1 \leq i \leq n, \tilde{c}_{i}$, and for each i, with $1 \leq j \leq n$, the j th coordinate of \tilde{c}_{i} is -1 , iff the j th bit of c_{i} is 1 . Note that if $\Delta\left(c_{i}, c_{j}\right) \geq n / 2$, then this implies $\left\langle\tilde{c}_{i}, \tilde{c}_{j}\right\rangle \leq 0$. Intuitively, this means that if two codewords c_{i}, and c_{j} have large Hamming distance, then the angle between the corresponding vectors \tilde{c}_{i}, and \tilde{c}_{j}, should be large.

Pick a random unit vector $x \in \mathbb{R}^{n}$. We have that w.h.p., $\left\langle x, \tilde{c}_{i}\right\rangle \neq 0$, for all i, with $1 \leq i \leq m$. Moreover, since there are m codewords, either x, or $-x$ has strictly positive inner product with at least $m / 2$ of the \tilde{c}_{i} s. We can assume w.l.o.g., that this holds for x. Since $m>2 n$, it follows that there exist $n+1$ vectors having strictly positive inner product with x. W.l.o.g., assume that these are the vectors $\tilde{c}_{1}, \ldots, \tilde{c}_{n+1}$.

Observe that a set of $n+1$ vectors in an n-dimensional space, cannot be linear independent. Thus, we can assume that there exist $\lambda_{1}, \ldots, \lambda_{n+1} \in \mathbb{R}$, with $\lambda_{i}>0$, for each i, with $1 \leq i \leq j$, and $\lambda_{i} \leq 0$, for each i, with $j<i \leq n+1$, such that

$$
\sum_{i=1}^{j} \lambda_{i} \tilde{c}_{i}-\sum_{i=j+1}^{n+1} \lambda_{i} \tilde{c}_{i}=0
$$

Define the vector $z=\sum_{i=1}^{j} \lambda_{i} \tilde{c}_{i}$. We have to consider the following two cases for z :
Case 1, $z \neq 0$: We have $\langle z, z\rangle>0$. On the other hand,

$$
\begin{aligned}
\langle z, z\rangle & =\left\langle\sum_{i=1}^{j} \lambda_{i} \tilde{c}_{i}, \sum_{i=j+1}^{n+1} \lambda_{i} \tilde{c}_{i}\right\rangle \\
& =\sum_{i \leq j, i^{\prime}>j} \lambda_{i} \lambda_{i^{\prime}}\left\langle c_{i}, c_{i^{\prime}}\right\rangle \\
& \leq 0
\end{aligned}
$$

Thus, we obtain a contradiction.

Case 2, $z=0$: We have

$$
\sum_{i=1}^{j} \lambda_{i} \tilde{c}_{i}=0
$$

and thus

$$
\begin{aligned}
\langle z, x\rangle & =\left\langle\sum_{i=1}^{j} \lambda_{i} \tilde{c}_{i}, x\right\rangle \\
& =\sum_{i=1}^{j} \lambda_{i}\left\langle\tilde{c}_{i}, x\right\rangle \\
& >0
\end{aligned}
$$

The last inequality follows from the fact that $\lambda_{i}>0$, for $1 \leq i \leq j$, and that $\left\langle\tilde{c}_{i}, x\right\rangle>0$. This however is a contradiction, since $z=0$, which implies that $\langle z, x\rangle=0$.

3 The Johnson's Bound

Theorem 2 (Johnson's Bound) For any ϵ, with $0<\epsilon<1$, if C is a $\left[n, ?,\left(\frac{q-1}{q}\right)(1-\epsilon) n\right]_{q}$-code, then C corrects less than $\left(\frac{q-1}{q}\right)(1-\sqrt{\epsilon}) n$ errors, with lists of size $(q-1) n$.

We will give a proof of Theorem 2, for the special case of $q=2$.
Proof We will prove the contrapositive. That is, we assume that there exist $r, c_{1}, \ldots, c_{m} \in\{0,1\}^{n}$, such that for each i, with $1 \leq i \leq m$,

$$
\Delta\left(r, c_{i}\right) \leq \frac{1-\tau}{2} n
$$

and for each $i \neq j$,

$$
\Delta\left(c_{i}, c_{j}\right) \geq \frac{1-\epsilon}{2} n
$$

Define vectors $\tilde{r}, \tilde{c}_{1}, \ldots, \tilde{c}_{m} \in\{0,1\}^{n} \subset \mathbb{R}^{n}$, as in the proof of Theorem 1 . We have that for each i, with $1 \leq i \leq m$,

$$
\left\langle\tilde{r}, \tilde{c}_{i}\right\rangle \leq \tau n,
$$

and for each $i \neq j$,

$$
\left\langle\tilde{c}_{i}, \tilde{c}_{j}\right\rangle \geq \epsilon n
$$

We want to show that is $\tau>\sqrt{e}$, then $m \leq n$.
We have that the projection of each \tilde{c}_{i} into r is "large", and that the angle between each pair of \tilde{c}_{i}, \tilde{c}_{j} is also "large". Intuitively, the main idea of the proof is that these two properties cannot be satisfied simultaneously, if the number of the vectors \tilde{c}_{i} is too large. We will verify this argument by considering the vectors $\tilde{c}_{i}-\alpha r$, for carefully chosen α, and show that the angle between each pair of such vectors is at least 90°. Thus, we will obtain a bound on the number of such vectors.

Formally, we have

$$
\begin{aligned}
\left\langle c_{i}-\alpha r, c_{j}-\alpha\right\rangle & =\left\langle c_{i}, c_{j}\right\rangle-\alpha\left\langle c_{i}, r\right\rangle-\alpha\left\langle c_{j}, r\right\rangle+\alpha^{2}\langle r, r\rangle \\
& \leq\left(\epsilon-2 \alpha \tau+\alpha^{2}\right) n
\end{aligned}
$$

By setting $\alpha=\sqrt{\epsilon}$, we obtain that the inner product between each pair of vectors $\tilde{c}_{i}-\alpha r$, and $\tilde{c}_{j}-\alpha r$ is

$$
2 \sqrt{\epsilon}(\sqrt{\epsilon}-\tau) n
$$

Thus, for any $\tau<\sqrt{\epsilon}$, the inner product is negative, and the assertion follows by applying the Plotkin's Bound.

We note that for the case $q>2$, the proof of Theorem 2 becomes more technical. More specifically, one needs to map each bit of a codeword c_{i}, into more than one coordinates of the corresponding vector \tilde{c}_{i}. For example, if we have codewords in $\{0,1,2\}^{n}$, we can map each symbol of a vector in \mathbb{R}, such that the angle between each vector is at lest 90°.

4 Relating R with δ

4.1 Improving the Singleton Bound

Lemma 3 If there exists a $(n, k, d)_{2}$-code, then there also exists a $(2 d, k+2 d-n, d)_{2}$-code.
Proof Let C be a $(n, k, d)_{2}$-code. C contains 2^{k} codewords, of length n. Thus, if we project each codeword into the first $n-2 d$ coordinates, there are at least $2^{k+2 d-n}$ codewords, that are mapped into the same string. Since all these $2^{k+2 d-n}$ codewords have the same prefix of length $n-2 d$, and since their distance is at least d, it follows that their pairwise distance in the last $2 d$ bits should be at least d. Thus, the suffixes of these codewords form a $(2 d, k+2 d-n, d)_{2}$ code.

It follows by Lemma 3 that for any $(n, k, d)_{2}$-code, with $k+2 d-n \leq \log 4 d$, we have

$$
R+2 \delta-1 \leq 0
$$

4.2 The Elias-Bassalygo Bound

The main argument in the proof of the Hamming bound is that if we have k non-intersecting balls of radius $\frac{d-1}{/} 2$, in $\{0,1\}^{n}$, then the sum of their volumes cannot exceed 2^{n}. We will show how to extend this idea in the case of intersecting balls, by bounding the overlap.

Assume that we have a binary code of distance $\frac{1-\epsilon}{2}$. For each codeword $c \in\{0,1\}^{n}$, we consider the ball in $\{0,1\}^{n}$ of radius $\frac{1-\sqrt{\epsilon}}{2}$ around c. We have

$$
2^{k} \operatorname{Vol}\left(n, \frac{1-\sqrt{\epsilon}}{2} n\right) \leq n 2^{n}
$$

and thus

$$
2^{R n} 2^{H\left(\frac{1-\sqrt{\epsilon}}{2}\right) n} \leq 2^{n+o(n)}
$$

This implies

$$
R+H\left(\frac{1-\sqrt{\epsilon}}{2}\right) \leq 1
$$

So, if $\delta=\frac{1-\epsilon}{2}$, then $R+H\left(\frac{1}{2}-\frac{1}{2} \sqrt{1-2 \delta}\right) \leq 1$.

4.3 The Case $\delta \rightarrow 0$

An interesting question is what are the best possible codes, when $\delta \rightarrow 0$. The Hamming bound gives

$$
\begin{aligned}
R & \leq 1-H\left(\frac{\delta}{2}\right) \\
& \approx 1-\frac{1}{2}(1+o(1)) \delta \log _{2} \frac{1}{\delta}
\end{aligned}
$$

On the other hand, we know that there exist codes satisfying

$$
R \geq 1-(1+o(1)) \delta \log _{2} \frac{1}{\delta}
$$

4.4 The Case $\delta \rightarrow 1 / 2$

Another interesting question is what is the best possible value for R, in the case where $\delta=\frac{1-\epsilon}{2}$, with $\epsilon \rightarrow 0$. The Plotkin bound gives $R \leq 2 \epsilon$. Also, the EB-bound gives $R=O(\epsilon)$.

On the positive side, we can show (even for the case of random codes), that there exist codes with $R=\Omega\left(\epsilon^{2}\right)$.

We also note that the Linear-Programming bound gives $R=\tilde{O}\left(\epsilon^{2}\right)$ (also known as MRRW-bound, or JPL-bound).

5 Relating R with p

We would like to know what is the best possible values for R, and p, such that for infinitely many n, we have $(n, R n, ?)_{2}$-codes, that are ($p n, n$)-error-correcting.

The Shannon bound gives

$$
R \leq 1-H_{2}(p)
$$

We will next prove that this bound is tight.
Lemma 4 There exist codes, satisfying $R \geq 1-H_{2}(p)$.
Before we state the proof, we note that the same result can be obtained by using random codes in $\{0,1\}^{n}$, but the proof is rather technical.
Proof We will show that there exists a linear code of rate R, that is ($p n, n+1$)-error-correcting. We begin with an empty basis for the code, and we repeatedly increase the basis, by greedily adding one base-vector at a time.

More specifically, assume that we have already added the vectors $b_{1}, b_{2}, \ldots, b_{k} \in\{0,1\}^{n}$ in the basis. Let $C_{i}=\operatorname{span}\left(b_{1}, \ldots, b_{i}\right\}$. We pick b_{i+1}, so as to minimize the value Φ_{i+1}, where for each i, the value Φ_{i} is given by the following potential function:

$$
\Phi_{i}=\mathbf{E}\left[2^{\mid B(x, p n) \cap C_{i}}\right]
$$

where the expectation is taken over the random choices of x, when x is distributed uniformly in $\{0,1\}^{n}$.
We have

$$
\mathbf{E}\left[\Phi_{i+1}\right] \leq \Phi_{i}^{2}
$$

Thus, we can conclude that there exist base vectors b_{1}, \ldots, b_{k}, such that

$$
\Phi_{k} \leq \Phi_{0}^{2^{k}}
$$

Note that

$$
\Phi_{0}=1+\frac{\operatorname{Vol}(n, p n)}{2^{n}}
$$

To be continued in the next lecture ...

