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1 The rest of the course 

TaShma-Zuckerman-Safra extractor • 

Guruswami’s List Decodable codes • 

•	 Capalbo-Reingold-Vadhan-Wigderson Zig-zag product for expanders with good vertex expansion 

•	 Locally Testable and Decodable Codes 

2 T-Z-S Continued 

First a quick recap of what is going on: 

•	 We are extracting from an n bit source. 

•	 We are working over Fq , with q ≥ ∈
n. 

•	 We use a small code Csmall : Fq
l, list decodable from 2 − � errors with polynomial size ∩ {0, 1}	 1 

lists. 

•	 View the output of the weak random source as giving a polynomial P of degree 
∈

n in each variable. 

•	 Our seed consists of the tuple ((a, b), j), with a, b ∃ Fq , j ∃ [l]. 

•	 The extracting function is E(P, ((a, b), j)) = (Csmall(P (a + 1, b))j , Csmall(P (a + 1, b))j , . . . Csmall(P (a + m, b))j ) 

•	 This extractor can, for example, when the source has at least k = n3/4 bits of min-entropy, extract

m = n1/4 output bits.


•	 This was generalized to work for better parameters in the paper of Shaltiel and Umans. 

2.1 Analysis Continued 

Another quick recap of what we were trying to do in the proof: 

m •	 Suppose �A : {0, 1} × F
2 
q × [l] ∩ {0, 1}, and X , X = 2k with| |

Prx�R X,y [A(E(x, y), y) = 1] > Prz,y [A(z, y) = 1] + � 

•	 Step 1 (the usual): Convert our distinguisher to a predictor: 

�i � m, �� > 0, B : Fi−1 × F
2 
q ∩ Fq , X

�, X � > large q | |

such that


�, P ra,b[B(P (a + 1, b), P (a + 2, b), . . . P (a + i − 1, b)) = P (a + i, b)] > ��
�P ∃ X


for some �� = poly(�, 1/m).


•	 Step 2 (the interesting part): Use the predictor to conclude that there is a short description

for the elements in X � , forcing X < something.
|	 |
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Now, the details for Step 1. 

•	 We focus on those polynomials where the predictor always works well; i.e. we go from P ∃R X to 
P ∃R X�/2, X�/2 > �/2 X , such that | | | |

�P ∃ X�/2, P ry [A(E(P, y), y) = 1] > Prz,y [A(z, y) = 1] + �/2 

•	 By hybridization, we can focus on one predictable bit: �i, bi+1, . . . bm s.t. �P ∃ X�/2, 

Pry=((a,b),j)[A(E(P, y)1, E(P, y)2, . . . E(P, y)i, bi+1, . . . bm) = 1] 

> Pr[A(E(P, y)1 , . . . E(P, y)i−1, bi, bi+1 . . . bm) = 1] + �/2m 

•	 Now we concentrate only on those (a, b) which allow E to be prone to prediction: 

S = {(a, b) : Prj [A(E(P, ((a, b), j))1 , . . . E(P, ((a, b), j)i , bi+1, . . . bm) = 1] 

> Pr[A(E(P, ((a, b), j))1 , . . . bi, bi+1, . . . bm) = 1] + �/4m 

By Markov, |S|
2 ∀ �/4m. |Fq |

•	 Now we make the predictor B. It first tries to guess (using the above property of E) for every 
j ∃ [l], the value of Csmall(P (a+ i, b))j . Given these values, it list decodes Csmall to get a small list 
of candidates, and outputs one of them at random. This will get the right answer with probability 
�� = poly(�/4m). 

Given this predictor B, we will now reconstruct P by taking only a few bits of non-uniform advice. 
This will allow us to bound the maximum possible size of X . 

Our reconstructor works as follows. First pick a random pair c, d ∃ F2 . Ask for P for j = 1, . . . i−1,q |Lj 

where Lj is the line {c + j + td : t ∃ Fq }. This is 2
∈

nm elements. Then, use B to predict the possible 
values of P on Li. Then, by the list decodability of Reed-Solomon codes, narrow down the possibilities 
for P Li . Finally, ask the non-uniform advisor for which one is actually correct (this requires a very |
small number of bits). This can be repeated 

∈
n times when enough values of the polynomial are known 

to completely reconstruct it. 
This procedure will succeed if for every line, we guess enough values correctly for the list-decoding 

to work. We choose parameters so that given ��/2 correct values on a line, the list of possible codewords 
is . The following calculation show that this will 

Let S = {(a, b) : B(P (a + 1, b), P (a + 2, b), . . . P (a + i − 1, b)) = P (a + i, b). Call a line L good if 
2 4 .	 By Chebyshev’s inequality, probability that L is not good < 4�2/�� < �� q . Thus the |L ≤ S| ∀ �

2 

� |Fq | �
nprobability that all lines involved are good is at least 1 − O( ).�� q 

Thus with a total of 2m
∈

n + (small)
∈

n bits of advice, we can reconstruct any polynomial in X � 

completely. This limits the size of X � to have at most 2O(2m
�

n) polynomials, implying that X has to be 
small. Thus for large enough X , E is an extractor. 

Guruswami Codes 

Guruswami codes combine 3 of the constructions that we saw in an ingenious way to produce codes 
with non-trivial list decodability properties. In particular, if one uses the TaShma-Zuckerman-Safra 
extractor to get list-decodable codes using the canonical TaShma-Zuckerman equivalence, and then plug 
this in (as the “left hand side” code) the Alon-Edmonds-Luby expander based code construction, we get 
Guruswami codes. These codes have O(1) alphabet size, rate O(�) and can be list decoded from 1 − � 
fraction errors with lists of size 2

�
n . Further, there is a O(2

�
n) time algorithm that can find this list. 

Until now, we did not even know about the existence of codes with these parameters. 

22-2


