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�
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 Today… 
• Memory Leaks and Valgrind Tool
�

• Structs and  Unions 

• Opaque Types 

• Enum and Typedef 

• GDB Debugging Tool 
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   Memory Issues (Live Demos!) 
• Illegal memory accesses (segmentation faults) 

• Stack overflow 

▫ Infinite recursions 

• Double frees 

• Dangerous use of uninitialized variables (see Lec 2)
�

• Memory leaks 
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Memory Leaks
�

• Since memory is user managed, there can be 
mistakes. 

• Memory leaks = allocated memory that’s not 
freed. 

• Why it matters? 
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Valgrind
�
• A memory profiling tool. Helps you find memory leaks.
�

• Compile with debug mode (using -g flag). 

gcc -g hello.c -o hello 

• Includes tools such as memcheck, cachegrind, callgrind, 
etc… 

• Command line: 

▫ valgrind  --tool=tool_name ./program_name 

▫ Example: valgrind --tool=memcheck ./hello_world 

6



  

 

 

  

    

 

Valgrind No Leaks Demo 

• $ valgrind --tool=memcheck ./hello_world 

...
�

=18515== malloc/free: in use at exit: 0 bytes in 0 blocks.
�

==18515== malloc/free: 1 allocs, 1 frees, 10 bytes allocated.
�

==18515== For a detailed leak analysis, rerun with: --leak-
check=yes 
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Valgrind Leak Demo 

• #include <stdlib.h> 

int main() 

{ 

char *x = (char*) malloc(100); //Mem Leak! 

return 0; 

} 
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Valgrind No Leaks Demo
�
•	�$ valgrind --tool=memcheck ./mem_leak
�

...
�

==12196== HEAP SUMMARY: 

==12196== in use at exit: 100 bytes in 1 blocks 

==12196== total heap usage: 1 allocs, 0 frees, 100 bytes allocated
�

==12196== 

==12196== LEAK SUMMARY: 

==12196== definitely lost: 100 bytes in 1 blocks 

==12196== indirectly lost: 0 bytes in 0 blocks 

==12196== possibly lost: 0 bytes in 0 blocks 

==12196== still reachable: 0 bytes in 0 blocks 

==12196== suppressed: 0 bytes in 0 blocks 
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More Valgrind Functionalities 

• Can also detect invalid pointer use 

▫ char *arr = malloc(10);
�

arr[10] = ‘a’
�

• Using uninitialized variables 

▫ int x;
�

if(x==0){…}
�

• Double/invalid frees 

• Valgrind doesn’t check bounds on statically 
allocated arrays though! 
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User Defined Data Types 

• C has no objects, but has data structures that can 
help fill in roles. Only contains data. 

• Structures and unions are like data objects 

▫ Contains groups of basic data types 

▫ Can be used like any normal type 

▫ Not true objects b/c they can’t contain functions
�
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age

name

Structures
�

• Declaring structs 

struct person{ 

int age;
�

char name[50];
�

};
�

struct person joe;
� A person! 

● Accessing members: . operator 
● instance_name.struct_member 
● joe.age 
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Structures
�
• Initializing structs 

▫ struct student｛ 

int id; 

char grade; 

}; 

struct student frank= {1, ‘A’}; 

Or Hmm...is that all I am? 

struct student frank; 
A number and a letter? 

frank.id = 1; :( 

frank.grade = ‘A’; 14
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Structures
�
• Struct pointers: 

▫ struct student * frank= malloc(sizeof(struct student)); 

• Accessing members of struct pointers: -> 

▫ frank->grade = 'A' // Hooray (for me)! 

• Can have structs within structs. Just use more . 
or -> operators to access inner structs. 
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Struct Memory
�
• Struct size != sum of member sizes 

• All members must “align” with largest member 
size 

• Each member has own alignment requirements
�

Ex: char = 1-byte aligned. 

short = 2-byte aligned. 

int = 4-byte aligned. ←Refer to documentation 
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Struct Memory
�
● Blackboard Example:
�

struct x{
�

char a; //1-byte, must be 1-byte aligned 

short b; //2-bytes, must be 2-byte aligned 

int c;  // Biggest member (4-bytes). X must be 4-byte 
// aligned
�

char d;
�

} 
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Unions
�
• Can only access one member at a time. Union stores all 

data in same chunk of memory. 

union data{ 

int x; char y; 

}; 

union data mydata; 

mydata.y = 'a'; 

mydata.x = 1; 

printf(“%d\n”, mydata.x) // Will print out 1 

printf(“%c\n”, mydata,y) // Will print out JUNK! 
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Common Use of Unions
�
• Union within struct 

struct student{ 

union grade{ 

int percentage_grade; //ex: 99% 
char letter_grade; // 'B' 

}; 

int grade_format; // I set to 0 if grade is int, 1 if grade is 
char
�

};
�

struct student frank;
�

frank.grade.percentage_grade = 90;
�

frank.grade_format = 0;
� 19
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Opaque Types
�

• Type exposed via pointers where definition can 
still change. Ex: Can change struct person 
definition in test.c without recompiling my_file.c 

test.h: 

struct person; 

test.c: 

struct person{ 
… //def here 

}; 

my_file.c: 

#include “test.h” 
int person_function(struct person * ptr){ 

… 
} 21
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Typedef
�
• Typedef assigns alternate name to existing type.
�

– typedef existing_type alternate_name 

typedef int seconds_t;
�

seconds_t x = 3;
�

typedef struct person person;
�

person frank; // instead of struct person frank
�

• Good for shorthand and code readability 

• Opaque types 

typedef struct person* person;
�

int func(person me){ ...}
�
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Enum
�

• Define own variable type with a set of int values 

enum time_t { morning, noon, afternoon, night};
�

enum time_t class = morning;
�

if (class == afternoon) { … }
�

• What actually happens is enum values are mapped 
to increasing sequence of int: 

– morning = 0, noon = 1, afternoon = 2, night = 3
�

– You can explicitly assign int values:

    enum time_t { morning, noon=2, afternoon, night};
�

morning = 0, noon = 2, afternoon = 3, night = 4 
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Why use Enum
�

• Like a #define variable but is actually a C 

element (has a type, obeys scoping rules)
�

#define NORTH 0 
#define EAST 1 
#define SOUTH 2 
#define WEST 3 

int direction = SOUTH; 
//Compiler sees: 
//int direction = 2 

enum dir_t{ 
NORTH, 
EAST, 
SOUTH, 
WEST 

}; 

typedef enum dir_t dir_t;
�
dir_t direction = SOUTH;
�

25



 
  

 

 

Today… 
• Memory Leaks and Valgrind Tool
�

• Structs and Unions 

• Opaque Types 

• Enum and Typedef 

• GDB Debugging Tool
�
26



  
    

 

   

 

Debugger (Your LifeSaver)
�
• Compile with –g flag (debug mode) 

gcc -g hello.c -o hello 

• Command-line debugger: gdb ./prog_name 

gdb ./hello 
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 GDB Example
�
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Debugger (Live Demo!)
�
Useful commands: 

▫ q/quit: exit GDB 

▫ r/run: run program 

▫ b/break (filename:)linenumber: create a 
breakpoint at the specified line. 

▫ s/step: execute next line, or step into a function
�

▫ c/continue: continue execution 

▫ p variable: print the current value of the variable
�

▫ bt: print the stack trace (very useful!) 
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Summary 
• Use Valgrind and GDB to find errors/memory 

bugs 

• C structs and unions are like data “objects” 

• Opaque types allow flexibility in struct/union 
usage 

• Enum and Typedef saves you time! 
30



 

Advanced Data Type Example
�

Image from: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html
�
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Courtesy of Osman Balci, Virginia Tech Center for Innovation in Learning. Used with permission.

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html


 

 

The Linked List!
�

Image from: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html
�
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Courtesy of Osman Balci, Virginia Tech Center for Innovation in Learning. Used with permission.

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html


  
    
    

   

 

Singly Linked Lists
�
• Singly linked list is a sequential list of nodes 

where each node contains a value and a 
link/pointer to the next node. 
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Courtesy of Osman Balci, Virginia Tech Center for Innovation in Learning. Used with permission.
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Singly Linked Lists 
• Nodes: 

struct node{ 

int data; 

struct node* next; 

};
�

typedef struct node node;
�

node* head = NULL;  //Points to beginning of list. Set
�

// to null initially.
�
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Singly Linked Lists
�

• Adding new data to list
�

node* add_data(int data){
�

node* new_node = (node*) malloc(sizeof(node)); 

new_node->data = data; 

new_node->next = head; 

head = new_node; 

return new_node; 

} 
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Singly Linked Lists
�

• Searching through list
�

node * find_data(int data){
�

node* current; 

for( current = head; current->next!=NULL; 
current= current->next){ 

if(current->data == data) return current; 

} 

return NULL; 

} 
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Singly Linked Lists
�
• Removing a certain data value 

void rm_data(int data){ 

//Special case if the head has the data 
if( head->data == data ) {
�

node* tmp = head;
�

head = head->next;
�

free(tmp);
�

return;
�

} 

…//Code continues on next slide 

} 
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Singly Linked Lists 
• Removing a certain data value 

void rm_data(int data){ 

…//Code from previous slide 

node* prev, *current; 

for(current = head; current->next!=NULL; current= current->next){ 

if(current->data == data){
�

prev->next = current->next;
�

free(current);
�

return ;
�

} 

prev = current; 

} 

} 
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