

6.S096: Introduction to C/C++
Frank Li, Tom Lieber, Kyle Murray

Lecture 4: Data Structures
�
and Debugging!
�

January 17, 2012
�
1

 Today…
• Memory Leaks and Valgrind Tool
�

• Structs and Unions

• Opaque Types

• Enum and Typedef

• GDB Debugging Tool
2

Today…
• Memory Leaks and Valgrind Tool
�

• Structs and Unions

• Opaque Types

• Enum and Typedef

• GDB Debugging Tool
3

 Memory Issues (Live Demos!)
• Illegal memory accesses (segmentation faults)

• Stack overflow

▫ Infinite recursions

• Double frees

• Dangerous use of uninitialized variables (see Lec 2)
�

• Memory leaks
4

Memory Leaks
�

• Since memory is user managed, there can be
mistakes.

• Memory leaks = allocated memory that’s not
freed.

• Why it matters?

5

Valgrind
�
• A memory profiling tool. Helps you find memory leaks.
�

• Compile with debug mode (using -g flag).

gcc -g hello.c -o hello

• Includes tools such as memcheck, cachegrind, callgrind,
etc…

• Command line:

▫ valgrind --tool=tool_name ./program_name

▫ Example: valgrind --tool=memcheck ./hello_world

6

Valgrind No Leaks Demo

• $ valgrind --tool=memcheck ./hello_world

...
�

=18515== malloc/free: in use at exit: 0 bytes in 0 blocks.
�

==18515== malloc/free: 1 allocs, 1 frees, 10 bytes allocated.
�

==18515== For a detailed leak analysis, rerun with: --leak-
check=yes

7

Valgrind Leak Demo

• #include <stdlib.h>

int main()

{

char *x = (char*) malloc(100); //Mem Leak!

return 0;

}

8

Valgrind No Leaks Demo
�
•	�$ valgrind --tool=memcheck ./mem_leak
�

...
�

==12196== HEAP SUMMARY:

==12196== in use at exit: 100 bytes in 1 blocks

==12196== total heap usage: 1 allocs, 0 frees, 100 bytes allocated
�

==12196==

==12196== LEAK SUMMARY:

==12196== definitely lost: 100 bytes in 1 blocks

==12196== indirectly lost: 0 bytes in 0 blocks

==12196== possibly lost: 0 bytes in 0 blocks

==12196== still reachable: 0 bytes in 0 blocks

==12196== suppressed: 0 bytes in 0 blocks
9

More Valgrind Functionalities

• Can also detect invalid pointer use

▫ char *arr = malloc(10);
�

arr[10] = ‘a’
�

• Using uninitialized variables

▫ int x;
�

if(x==0){…}
�

• Double/invalid frees

• Valgrind doesn’t check bounds on statically
allocated arrays though!

10

Today…
• Memory Leaks and Valgrind Tool
�

• Structs and Unions

• Opaque Types

• Enum and Typedef

• GDB Debugging Tool
11

User Defined Data Types

• C has no objects, but has data structures that can
help fill in roles. Only contains data.

• Structures and unions are like data objects

▫ Contains groups of basic data types

▫ Can be used like any normal type

▫ Not true objects b/c they can’t contain functions
�

12

age

name

Structures
�

• Declaring structs

struct person{

int age;
�

char name[50];
�

};
�

struct person joe;
� A person!

● Accessing members: . operator
● instance_name.struct_member
● joe.age

13

age

name

id

grade

Structures
�
• Initializing structs

▫ struct student｛

int id;

char grade;

};

struct student frank= {1, ‘A’};

Or Hmm...is that all I am?

struct student frank;
A number and a letter?

frank.id = 1; :(

frank.grade = ‘A’; 14

id

grade

Structures
�
• Struct pointers:

▫ struct student * frank= malloc(sizeof(struct student));

• Accessing members of struct pointers: ->

▫ frank->grade = 'A' // Hooray (for me)!

• Can have structs within structs. Just use more .
or -> operators to access inner structs.

15

Struct Memory
�
• Struct size != sum of member sizes

• All members must “align” with largest member
size

• Each member has own alignment requirements
�

Ex: char = 1-byte aligned.

short = 2-byte aligned.

int = 4-byte aligned. ←Refer to documentation

16

Struct Memory
�
● Blackboard Example:
�

struct x{
�

char a; //1-byte, must be 1-byte aligned

short b; //2-bytes, must be 2-byte aligned

int c; // Biggest member (4-bytes). X must be 4-byte
// aligned
�

char d;
�

}

17

Unions
�
• Can only access one member at a time. Union stores all

data in same chunk of memory.

union data{

int x; char y;

};

union data mydata;

mydata.y = 'a';

mydata.x = 1;

printf(“%d\n”, mydata.x) // Will print out 1

printf(“%c\n”, mydata,y) // Will print out JUNK!
18

Common Use of Unions
�
• Union within struct

struct student{

union grade{

int percentage_grade; //ex: 99%
char letter_grade; // 'B'

};

int grade_format; // I set to 0 if grade is int, 1 if grade is
char
�

};
�

struct student frank;
�

frank.grade.percentage_grade = 90;
�

frank.grade_format = 0;
� 19

Today…
• Memory Leaks and Valgrind Tool
�

• Structs and Unions

• Opaque Types

• Enum and Typedef

• GDB Debugging Tool
�
20

Opaque Types
�

• Type exposed via pointers where definition can
still change. Ex: Can change struct person
definition in test.c without recompiling my_file.c

test.h:

struct person;

test.c:

struct person{
… //def here

};

my_file.c:

#include “test.h”
int person_function(struct person * ptr){

…
} 21

Today…
�
• Memory Leaks and Valgrind Tool
�

• Structs and Unions

• Opaque Types

• Enum and Typedef

• GDB Debugging Tool
22

Typedef
�
• Typedef assigns alternate name to existing type.
�

– typedef existing_type alternate_name

typedef int seconds_t;
�

seconds_t x = 3;
�

typedef struct person person;
�

person frank; // instead of struct person frank
�

• Good for shorthand and code readability

• Opaque types

typedef struct person* person;
�

int func(person me){ ...}
�
23

Enum
�

• Define own variable type with a set of int values

enum time_t { morning, noon, afternoon, night};
�

enum time_t class = morning;
�

if (class == afternoon) { … }
�

• What actually happens is enum values are mapped
to increasing sequence of int:

– morning = 0, noon = 1, afternoon = 2, night = 3
�

– You can explicitly assign int values:

 enum time_t { morning, noon=2, afternoon, night};
�

morning = 0, noon = 2, afternoon = 3, night = 4
24

Why use Enum
�

• Like a #define variable but is actually a C

element (has a type, obeys scoping rules)
�

#define NORTH 0
#define EAST 1
#define SOUTH 2
#define WEST 3

int direction = SOUTH;
//Compiler sees:
//int direction = 2

enum dir_t{
NORTH,
EAST,
SOUTH,
WEST

};

typedef enum dir_t dir_t;
�
dir_t direction = SOUTH;
�

25

Today…
• Memory Leaks and Valgrind Tool
�

• Structs and Unions

• Opaque Types

• Enum and Typedef

• GDB Debugging Tool
�
26

Debugger (Your LifeSaver)
�
• Compile with –g flag (debug mode)

gcc -g hello.c -o hello

• Command-line debugger: gdb ./prog_name

gdb ./hello

27

 GDB Example
�

28

Debugger (Live Demo!)
�
Useful commands:

▫ q/quit: exit GDB

▫ r/run: run program

▫ b/break (filename:)linenumber: create a
breakpoint at the specified line.

▫ s/step: execute next line, or step into a function
�

▫ c/continue: continue execution

▫ p variable: print the current value of the variable
�

▫ bt: print the stack trace (very useful!)

29

Summary
• Use Valgrind and GDB to find errors/memory

bugs

• C structs and unions are like data “objects”

• Opaque types allow flexibility in struct/union
usage

• Enum and Typedef saves you time!
30

Advanced Data Type Example
�

Image from: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html
�
31

Courtesy of Osman Balci, Virginia Tech Center for Innovation in Learning. Used with permission.

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html

The Linked List!
�

Image from: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html
�
32

Courtesy of Osman Balci, Virginia Tech Center for Innovation in Learning. Used with permission.

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html

Singly Linked Lists
�
• Singly linked list is a sequential list of nodes

where each node contains a value and a
link/pointer to the next node.

33

Image from: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html
�

Courtesy of Osman Balci, Virginia Tech Center for Innovation in Learning. Used with permission.

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/Lesson.html

Singly Linked Lists
• Nodes:

struct node{

int data;

struct node* next;

};
�

typedef struct node node;
�

node* head = NULL; //Points to beginning of list. Set
�

// to null initially.
�

34

Singly Linked Lists
�

• Adding new data to list
�

node* add_data(int data){
�

node* new_node = (node*) malloc(sizeof(node));

new_node->data = data;

new_node->next = head;

head = new_node;

return new_node;

}

35

Singly Linked Lists
�

• Searching through list
�

node * find_data(int data){
�

node* current;

for(current = head; current->next!=NULL;
current= current->next){

if(current->data == data) return current;

}

return NULL;

}
36

Singly Linked Lists
�
• Removing a certain data value

void rm_data(int data){

//Special case if the head has the data
if(head->data == data) {
�

node* tmp = head;
�

head = head->next;
�

free(tmp);
�

return;
�

}

…//Code continues on next slide

}
37

Singly Linked Lists
• Removing a certain data value

void rm_data(int data){

…//Code from previous slide

node* prev, *current;

for(current = head; current->next!=NULL; current= current->next){

if(current->data == data){
�

prev->next = current->next;
�

free(current);
�

return ;
�

}

prev = current;

}

}
38

MIT OpenCourseWare
http://ocw.mit.edu

6.S096 Introduction to C and C++
IAP 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Slide 1
	Today…
	Slide 5
	Memory Issues
	Slide 7
	Slide 12
	Valgrind No Leaks Example
	Slide 14
	Slide 15
	More Valgrind Functionalities
	Slide 17
	User Defined Data Types
	Structures
	Structures
	Structures
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Typedef
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Advanced Data Type Example
	The Linked List!
	Singly Linked Lists
	Singly Linked Lists
	Singly Linked Lists
	Singly Linked Lists
	Singly Linked Lists
	Singly Linked Lists

