Inventory Management Multi-Items and Multi-Echelon

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Nov 2006

Advanced Topics

So far, we have studied single-item single location inventory policies.

- What about . . .
 - Multiple Items
 - How do I set aggregate policies?
 - What if I have to meet a system wide objective?

2

Multiple Locations – Multi-echelon

- Deterministic demand
- Stochastic demand

Inventory Planning Hierarchy

Inventory Policies for Multiple Items

- Aggregate constraints are placed on total inventory
 - Avg total inventory cannot exceed a certain budget (\$ or Volume)
 - Total number of replenishments per unit time must be less than a certain number
- Inventory as a portfolio of stocks which ones will yield the highest return?
- Cost parameters can be treated as management policy variables
 - There is no single correct value for holding cost, r.
 - Best r results in a system where inventory investment and service level are in agreement with overall strategy.
 - Cost per order, A, is also not typically known with any precision.
 - Safety factor, k, is set by management.
- Exchange Curves
 - Cycle Stock Trade-off between total cycle stock and number of replenishments for different A/r values
 - Safety Stock Trade-off between total safety stock and some performance metric for different k values

Set notation for each item:

- A = Order cost common for all items
- r = Carrying cost common for all items
- D_i = Demand for item i
- v_i = Purchase cost of item i
- Q_i = Order quantity for item i
- Need to find:

Total average cycle stock (TACS) and Number of replenishments (N)

$$TACS = \sum_{i=1}^{n} \frac{Q_i v_i}{2} = \sum_{i=1}^{n} \frac{\left(\sqrt{\frac{2AD_i}{rv_i}}\right) v_i}{2}$$
$$TACS = \sum_{i=1}^{n} \sqrt{\frac{AD_i v_i}{2r}} = \sqrt{\frac{A}{r}} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \sqrt{D_i v_i}$$
$$N = \sum_{i=1}^{n} \sqrt{\frac{rD_i v_i}{2A}} = \sqrt{\frac{r}{A}} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \sqrt{D_i v_i}$$

Exchange curve for 65 items from a hospital ward. Current operations calculated from actual orders. Allows for management to set A/r to meet goals or budget, Suppose TACS set to \$20,000 – we would set A/r to be ~100

MIT Center for Transportation & Logistics – ESD.260

Now consider safety stock, where we are trading off SS inventory with some service metric

Different k values dictate where we are on the curve Suppose that we only have budget for \$2000 in SS – what is our CSL?

© Chris Caplice, MIT

Set notation for each item:

- $\sigma_{Li} = RMSE$ for item i
- k_i = Safety factor for item i
- D_i = Demand for item i
- v_i = Purchase cost of item i
- Q_i = Order quantity for item i
- Need to find:
 - Total safety stock (TSS) and
 - Some service level metric
 - Expected total stockout occasions per year (ETSOPY)
 - Expected total value short per year (ETVSPY)

$$TSS = \sum_{i=1}^{n} k_i \sigma_{Li} V_i$$

$$ETSOPY = \sum_{i=1}^{n} \frac{D_i}{Q_i} P[SO_i]$$

$$ETVSPY = \sum_{i=1}^{n} \frac{D_i}{Q_i} \sigma_{Li} V_i G(k_i)$$

Exchange curve for same 65 items from a hospital ward. Allows for management to set aggregate k to meet goals or budget, Suppose TSS set to \$1,500 – we would expect ~100 stockout events per year and would set k= 1.6

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Replenishment in a Multi-Echelon System

MIT Center for Transportation & Logistics – ESD.260

10

© Chris Caplice, MIT

What if I Use Traditional Techniques?

- In multi-echelon inventory systems with decentralized control, lot size / reorder point logic will:
 - Create and amplify "lumpy" demand
 - Lead to the mal-distribution of available stock, hoarding of stock, and unnecessary stock outs
 - Force reliance on large safety stocks, expediting, and re-distribution.

Impact of Multi-Echelons

© Chris Caplice, MIT

What does a DRP do?

Premises

- Inventory control in a distribution environment
- Many products, many stockage locations
- Multi-echelon distribution network
- Layers of inventory create "lumpy" demand

Concepts

- Dependent demand versus independent demand
- Requirements calculation versus demand forecasting
- Schedule flow versus stockpile assets
- Information replaces inventory

"DRP is simply the application of the MRP principles and techniques to distribution inventories"

Andre Martin

MIT Center for Transportation & Logistics – ESD.260

DRP Requirements

Information Requirements:

- Base Level Usage Forecasts
- Distribution Network Design
- Inventory Status
- Ordering Data

DRP Process:

- Requirements Implosion
- Net from Gross Requirements
- Requirements Time Phasing
- Planned Order Release

The DRP Plan

		0	Central W	arehouse	e Facility				
Q=200, SS=0, LT=2	NOW	1	2	3	4	5	6	7	8
Period Usage		100	20	50	30	100	0	100	0
Gross Rqmt		100	20	50	30	100	0	100	0
Begin Inv		150	50	30	180	150	50	50	150
Sched Recpt		0	0	0	0	0	0	0	0
Net Rqmt		-	-	20	-	-	-	50	-
Planned Recpt		0		200	0	0	0	200	0
End Inv	150	50	30	180	150	50	50	150	150
Planned Order		200				200			
			Regiona	Warehou	use One				
Q=50, SS=15, LT=1	NOW	1	2	3	4	5	6	7	8
Period Usage		25	25	25	25	25	25	25	25
Gross Rqmt		40	40	40	40	40	40	40	40
Begin Inv		50	25	50	25	50	25	50	25
Sched Recpt		0	0	0	0	0	0	0	0
Net Rqmt		-}	15	-	15	-	15		15
Planned Recpt		0	50	0	50	0	50	0	50
End Inv	50	25	50	25	50	25	50	25	50
Planned Order		50		50		50		50	
		2	Regional	Warehou	ise Two				}
Q=30, SS=10, LT=1	NOW	1	2	3	4	5	6	7	8
Period Usage		10	10	10	10	20	20	20	20
Gross Rqmt		20	20	20	20	30	30	30	30
Begin Inv		20	10	30	20	10	20	30	10
Sched Recpt		0	0	0	0	0	0	0	0
Net Rqmt		-	10	-	-	20	10	-	20
Planned Recpt			30	0	0	30	30	0	30
End Inv	20	10	30	20	10	20	30	10	20
Planned Order		30			30	30		30	
		F	Regional	Warehou	se Three	•			
Q=20, SS=10, LT=1	NOW	1	2	3	4	5	6	7	8
Period Usage		5	15	10	10	0	15	0	15
Gross Ramt		15	25	20	20	10	25	10	25
Begin Inv		15	10	15	25	15	15	20	20
Sched Recot		0	0	0	0	0	0	0	0
Net Ramt		-	15	5	-	-	10	<u> </u>	5
Planned Recot		0	20	20	0	0	20	0	20

Regional Warehouse One Q=50, SS=15, LT=1

- Forecast

	NOW	1	2	3	4	5	6	7	8
Period Usage		25	25	25	25	25	25	25	25
Gross Rqmt		40	40	40	40	40	40	40	40
Begin Inv		50	25	50	25	50	25	50	25
Sched Rcpt		0	0	0	0	0	0	0	0
Net Rqmt			15		15		15		15
Plan Rcpt		0	50	0	50	0	50	0	50
End Inv	50	25	50	25	50	25	50	25	50
POR		50		50		50		50	

MIT Center for Transportation & Logistics – ESD.260

Regional Warehouse Two Q=30, SS=10, LT=1

	NOW	1	2	3	4	5	6	7	8
Period Usage		10	10	10	10	20	20	20	20
Gross Rqmt		20	20	20	20	30	30	30	30
Begin Inv		20	10	30	20	10	20	30	10
Sched Rcpt		0	0	0	0	0	0	0	0
Net Rqmt			10			20	10		20
Plan Rcpt		0	30	0	0	30	30	0	30
End Inv	20	10	30	20	10	20	30	10	20
POR		30			30	30		30	

Regional Warehouse Three Q=20, SS=10, LT=1

	NOW	1	2	3	4	5	6	7	8
Period Usage		5	15	10	10	0	15	0	15
Gross Rqmt		15	25	20	20	10	25	10	25
Begin Inv		15	10	15	25	15	15	20	20
Sched Rcpt		0	0	0	0	0	0	0	0
Net Rqmt			15	5			10		5
Plan Rcpt		0	20	20	0	0	20	0	20
End Inv	15	10	15	25	15	15	20	20	25
POR		20	20			20		20	

MIT Center for Transportation & Logistics – ESD.260

The DRP Plan for All Locations

Rolling Up Orders

	NOW	1	2	3	4	5	6	7	8
CENTRAL									
Period Usage		100	20	50	30	100	0	100	0
POR		200				200			
REGION ONE									
Period Usage		25	25	25	25	25	25	25	25
POR		50		50		50		50	
REGION TWO									
Period Usage		10	10	10	10	20	20	20	20
POR		30			30	30		30	
REGION THREE									
Period Usage		5	15	10	10	0	15	0	15
POR		20	20			20		20	

MIT Center for Transportation & Logistics – ESD.260

Central Warehouse Q=200, SS=0, LT=2

	NOW	1	2	3	4	5	6	7	8
Period Usage		100	20	50	30	100	0	100	0
Gross Rqmt		100	20	50	30	100	0	100	0
Begin Inv		150	50	30	180	150	50	50	150
Sched Rcpt		0	0	0	0	0	0	0	0
Net Rqmt				20				50	
Plan Rcpt		0	0	200	0	0	0	200	0
End Inv	150	50	30	180	150	50	50	150	150
POR		200				200			

Results and Insights

DRP is a scheduling and stockage algorithm -- it replaces the forecasting mechanism above the base inventory level

DRP does not determine lot size or safety stock
 -- but these decisions must be made as inputs to the process

DRP does not explicitly consider any costs -- but these costs are still relevant and the user must evaluate trade-offs

DRP systems can deal with uncertainty somewhat -- using "safety time" and "safety stock"

MRP / DRP Integration

© Chris Caplice, MIT

Evolution of Inventory Management

Traditional Replenishment Inventory:

- Lot Size/ Order Point Logic
- Single item focus
- Emphasis on cost optimization
- Long run, steady state approach
- The MRP / DRP Approach:
 - Scheduling emphasis
 - Focus on quantities and times, not cost
 - Multiple, inter-related items and locations
 - Simple heuristic rules

Evolution of Inventory Management

MRP / DRP have limited ability to deal with:

- Capacity restrictions in production and distribution
- set-up" costs
- fixed and variable shipping costs
- alternative sources of supply
- network transshipment alternatives
- expediting opportunities
- Next Steps in MRP/DRP
 - Establish a time-phased MRP/MPS/DRP network
 - Apply optimization tools to the network
 - Consider cost trade-offs across items, locations, and time periods
 - Deal with shortcomings listed above

A DRP Network Plan

What happens when actual demand in the short term doesn't follow the forecast exactly.....

How should I re-deploy my inventory to take the maximum advantage of what I do have?

A DRP Network Reality

Optimal Network Utilization

Information and Control Impacts

	Centralized Control	Decentralized Control			
Global Information	 Vendor Managed Inventory (VMI) DRP (some cases) Extended Base Stock Control Systems 	 DRP (most cases) Base Stock Control 			
Local Information	N/A	Standard Inventory Policies: (R,Q), (s,S) etc.			

Questions?

