Transportation Management Operational Networks

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Nov 2006

Agenda

Economic vs Traditional Modes
Operational Networks

One to One
One to Many
Many to Many

Example of Approximate Analysis

2

Traditional Transport Modes (US)

3

© Chris Caplice, MIT

The Transportation Product

Four Primary Transportation Components

- Loading/Unloading
- Line-Haul
- Local-Routing (Vehicle Routing)
- Sorting

Basic Forms of Consolidation

- Vehicle
- Temporal
- Spatial

Oriving Influences

- Economies of Scale
- Economies of Scope (Balance)
- Economies of Density

The Transportation Product

Regression of Long Haul TL Rates

		95% Confidence Limits	
Independent Variable	Coefficient Value	Lower Bound	Upper Bound
(Constant)	116.84	107.57	126.12
Distance	1.10	1.097	1.101
OutBound Flag	9.04	5.48	12.61
Private Fleet Dist	(0.17)	(0.21)	(0.13)
Spot Mkt Dist	0.29	0.26	0.32
Intermodal Dist	(0.29)	(0.30)	(0.29)
Expedited Dist	0.15	0.13	0.16
High Frequency Flag	(72.49)	(78.44)	(66.54)
Monthly Flag	(60.96)	(64.44)	(57.49)
Quarterly Flag	(36.33)	(38.96)	(33.69)
\$100M Buy Flag	(19.2840)	(23.85)	(14.71)
Regional Values	XXX	XX	

Explains ~77%

Explains ~ 2%

Explains ~ 7%

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

The Transportation Product

Plant A

Customer B

Vehicle Routing

- Key drivers:
 - Number/Density of stops
 - Vehicle Capacity
 - Time
- Origin or Destination
 - One to Many
 - Many to One
 - Interleavened

7

Customer D

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Customer C

The Transportation Product

Four Primary Transportation Components

- Loading/Unloading
- Line-Haul
- Local-Routing (Vehicle Routing)
- Sorting

Basic Forms of Consolidation

- Vehicle
- Temporal
- Spatial

Oriving Influences

- Economies of Scale
- Economies of Scope (Balance)
- Economies of Density

Economies of Scale

♦ For an individual shipment –

- Captures allocation of fixed costs over many items
- Follows lot sizing logic drives mode selection

- Across a network this is less clear
 - Volume on all lanes increase in the same proportion
 - It depends on directionality (mainly direct carriers)
 - Consolidated carriers have more fixed costs more terminals

MIT Center for Transportation & Logistics – ESD.260

Economies of Scope (Balance)

Reverse flow mitigates the cost of repositioning.

Strong for direct carriers – but present in all

- Subadditivity the costs of serving a set of lanes by a single carrier is lower than the costs of serving it by a group of carriers
- Cost Complementarity the effect that an additional unit carried on one lane has on other lanes

11

Economies of Density

Strong for Consolidated Carriers

- Location Density
 - Number of customers per unit area
- Shipment Density
 - Average number of shipments at a customer location
 - Daily average volume is critical

Economic Modes

Economic Modes

Consolidated operations (CO)

- Bus/rail transit
- 🔷 LTL
- Rail
- Airlines
- Ocean carriers/liner service
- Package delivery

- Direct operations (DO)
- 🔷 Taxi
- ♦ TL
- Unit trains
- Charter/private planes
- Tramp services
- Courier

DO conveyances on CO carriers (sub-consolidation)

- Rail cars
- Ocean containers
- Air "igloos"

Operational Network (ONW) Structure

- Direct with Milk Runs
 - Consolidation within the Vehicle

One to One

P - Pickup Location D - Delivery Location

MIT Center for Transportation & Logistics – ESD.260

Operational Network (ONW) Structure

Many to Many

- No Transhipment Point
 - Direct with Milk Runs
- With Transhipment Point
 - Direct with DC (Cross Docking)
 - Direct with Milk Runs

M2M Interleavened

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Decisions – Contract Type

- What type of relationship do you need to establish with your carriers?
- Continuum of relationships from one-off to ownership
 - Ownership of Assets versus Control of Assets
 - Responsibility for utilization
 - On-going commitment / responsibilities
 - Shared Risk/Reward Flexible contracts

Solution Approaches for ONW

Math Programming / Algorithmic Approach

- Develop detailed objective function and constraints
- Requires substantial data
- Solve MILP to optimality
- Simulation Approach
 - Develop detailed rules and relationships
 - Simulate the expected demand patterns
 - Observe results and rank different scenarios
- Approximation Approach
 - Develop a Total Cost Function that incorporates the relevant decision variables
 - Obtain reasonable results with as little information as possible in order to gain insights
 - Detailed data can actually make the optimization process harder

Total Cost Per Item Function

Cost per item = Holding Costs + Moving Costs = (Inventory Cost) + (Transport Cost + Handling Cost)

$$TC(Q) = vD + A\left(\frac{D}{Q}\right) + rv\left(\frac{Q}{2}\right)$$

$$CostPerItem = \frac{TC(Q)}{D} = v + \frac{A}{Q} + rv\left(\frac{T}{2}\right)$$

$$ShipmentCost = c_f + c_vQ$$

$$c_f = c_s(1+n_s) + c_dd \qquad c_v = c_{vs} + c_{vd}d$$

$$ShipmentCost = \left[c_s(1+n_s) + c_dd\right] + \left[Q(c_{vs} + c_{vd}d)\right]$$

$$TransportCPI = c_s\left(\frac{1+n_s}{Q}\right) + c_d\left(\frac{d}{Q}\right) + c_{vs}$$

Nomenclature

A = Fixed order cost (\$/shipment) r = Inventory holding cost (\$/yr) v = Purchase cost (\$/item) Q = Shipment size (items) T = Shipment frequency (yr) = Q/D L = Lead time for transport (yr) c_f = Fixed transport cost (\$/shipment) $c_v = Variable transport cost (#/item)$ $c_s = Fixed cost per stop ($/stop)$ $c_d = Cost per distance (\$/distance)$ c_{vd} = Marginal cost / item / distance c_{vs} = Marginal cost / item / stop $n_s =$ Number of <u>delivery</u> stops

MIT Center for Transportation & Logistics – ESD.260

One to One System

Handling Costs

Handling Costs (\$/item)

- Loading items into boxes, pallets, containers, etc.
- If handled individually linear with each item
- If handled in batches fixed & variable components
- Generally subsumed w/in transportation (move) costs as long as $Q >> Q_{hMAX}$ (total shipment size is greater than pallet)

$$HandlingCost = c_{fh} + c_{vh}Q_h$$

$$MovementCost = c_f + \left(c_v + c_{vh} + \frac{c_{fh}}{Q_{hMAX}}\right)Q$$

Transport & Handling = $c_s \left(\frac{1+n_s}{Q}\right) + c_d \left(\frac{d}{Q}\right) + \left|c_{vs} + c_{vh} + \frac{c_{fh}}{Q_{hMAX}}\right|$

Single Distribution Center:

- Products originate from one origin
- Products are demanded at many destinations
- All destinations are within a specified Service Region
- Ignore inventory (service standards given)

Finding the estimated total distance:

- Divide the Service Region into Delivery Districts
- Estimate the distance required to service each district

Figure by MIT OCW.

MIT Center for Transportation & Logistics – ESD.260

23

Based on Hernandez MLOG Thesis 2003

An Aside: Routing & Scheduling

Problem:

- How do I route vehicle(s) from one or many origins to one or many destinations at a minimum cost?
- A HUGE literature and area of research
- Traveling Salesman Problem / Vehicle Routing Problem
 - One origin, many destinations, sequential stops
 - Stops may require delivery & pick up
 - Vehicles have different capacity (capacitated)
 - Stops have time windows
 - Driving rules restricting length of tour, time, number of stops
- Discussed next lecture Dr. Edgar Blanco

♦ Find the estimated distance for each tour, d_{TOUR}

- Capacitated Vehicle Routing Problem (VRP)
- Cluster-first, Route-second Heuristic

$$d_{TOUR} \approx 2d_{LineHaul} + d_{Local}$$

 $d_{LineHaul}$ = Distance from origin to center of gravity (centroid) of delivery district d_{Local} = Local delivery between c customers in district (TSP)

What can we say about the expected TSP distance to cover n stops in district of area X?
Hard bound and some network specific estimates:

27

 $E[d_{TSP}] \le 1.15\sqrt{nX}$ $E[d_{TSP}] \approx k\sqrt{nX}$

For n>25 over Euclidean space, k=.7124 For grid (Manhattan Metric), k=.7650

 $\delta = -$

 $=\frac{d_{TSP}}{k}=k\cdots$

Density, δ , number of stops per area Average distance per stop, d_{stop}

Source: Larson & Odoni Urban Operations Research 1981 http://web.mit.edu/urban_or_book/www/book/index.html, see section 3.87

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

n

Length of local tours

- Number of customer stops, c, times d_{stop} over entire region
- Exploits property of TSP being sub-divided
 - TSP of disjoint sub-regions ≥ TSP over entire region

MIT Center for Transportation & Logistics – ESD.260

28

© Chris Caplice, MIT

Finding the total distance traveled on all, I, tours:

$$E\left[d_{TOUR}\right] = 2d_{LineHaul} + \frac{c\kappa}{\sqrt{\delta}}$$
$$E\left[d_{AllTours}\right] = lE\left[d_{TOUR}\right] = 2ld_{LineHaul} + \frac{nk}{\sqrt{\delta}}$$

al

Minimize number of tours by maximizing vehicle capacity

[x]⁺ is lowest integer value greater than x – a step function Estimate this with continuous function: $E([x]^+) \sim E(x) + \frac{1}{2}$

© Chris Caplice, MIT

So that expected distance is:

$$E\left[d_{AllTours}\right] = 2\left[\frac{E\left[D\right]}{Q_{MAX}} + \frac{1}{2}\right]d_{LineHaul} + \frac{E\left[n\right]k}{\sqrt{\delta}}$$

♦ Note that if each delivery district has a different density, then: $E[d_{AllTours}] = 2\sum_{i} \left[\frac{E[D_{i}]}{Q_{MAX}} + \frac{1}{2} \right] d_{LineHaul_{i}} + k\sum_{i} \frac{E[n_{i}]}{\sqrt{\delta_{i}}}$

For identical districts, the transportation cost becomes:

$$TransportCost = c_{s} \left[E[n] + \frac{E[D]}{Q_{MAX}} + \frac{1}{2} \right] + c_{d} \left(2 \left[\frac{E[D]}{Q_{MAX}} + \frac{1}{2} \right] d_{LineHaul} + \frac{E[n]k}{\sqrt{\delta}} \right) + c_{vs} E[D]$$

MIT Center for Transportation & Logistics – ESD.260

Fleet Size

- Find minimum number of vehicles required, M
- Base on, W, amount of required work time
 - $t_w = available$ worktime for each vehicle per period
 - s = average vehicle speed
 - I = number of shipments per period
 - t_I =loading time per shipment
 - t_s = unloading time per stop

$$Mt_{w} \ge W = \frac{d_{AllTours}}{s} + lt_{l} + nt_{s}$$

$$W = \left(\frac{2d_{LineHaul}}{s} + t_l\right) \left[\frac{E[D]}{Q_{MAX}} + \frac{1}{2}\right] + E[n]\left(\frac{k}{s\sqrt{\delta}} + t_s\right)$$

Note that W is a linear combination of two random variables, n and D

$$E[aX + bY] = aE[X] + bE[Y]$$

 $Var[aX + bY] = a^{2}Var[X] + b^{2}Var[Y] + 2abCov[X,Y]$

Substituting in, we can find E[W] and Var[W]

Given a service level, CSL P[W<Mt_w]=CSL Thus,

M= (E[W] + k(CSL) StDev[W])/ t_w

Questions?