Transportation Management Vehicle Routing

Chris Caplice
ESD.260/15.770/1.260 Logistics Systems
Nov 2006

Local Routing

- Large Number of Network Problems - we will look at four
- Shortest Path Problem
* Given: One origin, one destination
- Find: Shortest path from single origin to single destination
- Transportation Problem
- Given: Many origins, many destinations, constrained supply
- Find: Flow from origins to destinations
- Traveling Salesman Problem
- Given: One origin, many destinations, sequential stops, one vehicle
* Find: Shortest path connecting each stop once and only once
- Vehicle routing Problem
* Given: One origin, many destinations, many capacitated vehicles
- Find: Lowest cost tours of vehicles to destinations

Shortest Path Problem

Find the shortest path in a network between two nodes - or from one node to all others

- Result is used as base for other analysis
- Connects physical to operational network
- Issues
- What route in practice is used? Shortest? Fastest? Unrestricted?
- Frequency of updating the network
- Using time versus distance (triangle inequality)
- Impact of real-time changes in congestion
- Speed of calculating versus look-up

Shortest Path

Shortest Path Matrix

$\mathbf{i} \mathbf{j}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	\cdots	\mathbf{n}
$\mathbf{1}$		d_{12}	$\mathrm{~d}_{13}$	$\mathrm{~d}_{14}$		$\mathrm{~d}_{1 \mathrm{n}}$
$\mathbf{2}$			d_{23}	$\mathrm{~d}_{24}$		$\mathrm{~d}_{2 \mathrm{n}}$
$\mathbf{3}$				d_{34}		$\mathrm{~d}_{3 \mathrm{n}}$
$\mathbf{4}$						$\mathrm{d}_{4 \mathrm{n}}$
$\ldots \mathbf{n}$						
\mathbf{n}						

Transportation Problem

- Find minimum cost routes for between multiple origins and destinations
- Flow is fungible - same products
- Cost on arcs, $c_{i j}$,
- Flow on arcs, $x_{i j}$
- Many solution approaches
- Balanced problem - Supply=Demand
- Unbalanced -
- Transhipment Problem - neutral nodes

$$
\begin{array}{|lll|}
\hline \text { Min } & \sum_{i j \in N} c_{i j} x_{i j} & \\
\text { s.t. } & \\
& \sum_{j=1}^{n} x_{i j}=\text { Supply }_{i} & \forall i \\
& \sum_{i=1}^{n} x_{i j}=\text { Demand }_{j} & \forall j \\
& x_{i j} \geq 0 & \forall i j \\
\hline
\end{array}
$$

Traveling Salesman Problem

- Starting from an origin, find the minimum distance required to visit each destination once and only once and return to origin.
- m TSP: best tour for m salesmen
- Very old problem ~1832
- For history, see: http://www.tsp.gatech.edu/index.html

Number of tours with n cities

TSP Solution Approaches

- Heuristics

- Construction
- Nearest neighbor
- Greedy (complete graph, pick shortest edge until Hamiltonian path)
- Sweep (example of Cluster-First, Route-Second)
- Space filling curve (example of Route-First, Cluster-Second)
- Insertion (nearest, cheapest)
- Savings (Clarke-Wright)
- Local Improvement
- 2-opt
- 3-opt
- Meta-heuristics
- Tabu Search
- Ant System
- Simulated Annealing
- Genetic Algorithms
- Constraint Programming

Traveling Salesman Problem

- Nearest Neighbor Heuristic
- Start at any node and connect tour to closest adjacent node
- In practice 20\% above optimal
- Insertion Heuristic
- Form some sub tour (convex hull) and add in the nearest/furthest/cheapest/random node one at a time
- In practice 19\% / 9\% / 16\% / 11\% above optimal

2-Opt Heuristic

- Method of improving a solution
- Select two edges (a, b) and (c, d) where total tour distance decreases the most if reformed as (a,c) and (b,d).

Vehicle Routing Problem

- Find minimum cost tours from single origin to multiple destinations using multiple vehicles
- Who needs to solve the problem?
- Shippers - retailers, distributors, manufacturers
- Carriers - LTL, package
- Service companies - repair, waste, utility, postal, snow removal
- Types of problems
- Commercial delivery (retailers, distributors, manufacturers)
- Commercial pickup (retailers, distributors, manufacturers)
- Mixed pickup \& delivery (LTL and package carriers)
- Residential appointment (online grocery, medical gases, repair)
- Residential sweep (postal, waste, utility, snow removal)

I nitial Routes

Figure by MIT OCW.

Optimized Routes

Figure by MIT OCW.

VRP is NP-Hard

Difficult to evaluate quality by enumeration

Combinatorial Growth

Vehicle Routing Problems

-General Approaches

- Heuristics
- Route first Cluster second
- Space filling curve
- Any earlier heuristic can be used
- Cluster first Route second
- Sweep Algorithm
- Savings (Clarke-Wright)
- Optimal
- MI LP - Column Generation

Heuristic Approach - Cluster \& Sweep

Savings Algorithm

- Serve each node directly
- Identify savings for combining two nodes on

Shortest Path Matrix

- Clark-Wright Algorithm

 same tour- Add nodes together if savings >0
- $2 c_{0 i}+2 c_{0 j}>c_{0 i}+c_{i j}+c_{j 0}$
- Savings $=c_{0 i}+c_{j 0}-c_{i j}$

$\mathbf{i} \backslash \mathbf{j}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$		10	15	19	22
$\mathbf{1}$			8	23	35
$\mathbf{2}$				12	21
$\mathbf{3}$					5

Savings Algorithm

人 Suppose Max Capacity $=3$

- Savings $=c_{0 i}+c_{j 0}-c_{i j}$
- $S(1,2)=10+15-8=17$
- $S(1,3)=10+19-23=6$
- $S(1,4)=10+22-35=-3$
- $S(2,3)=15+19-12=22$
- $S(2,4)=15+22-21=16$
- $\mathrm{S}(3,4)=19+22-5=36$

Shortest Path Matrix

$\mathbf{i} \backslash \mathbf{j}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$		10	15	19	22
$\mathbf{1}$			8	23	35
$\mathbf{2}$				12	21
$\mathbf{3}$					5

Benefits of this approach?

Optimal Approach - MI LP w/CG

	Route 1	Route 2	Route 3	\ldots.	$\ldots .$.	Route M	
	C1	C2	C3	\ldots.	\ldots.	Cm	
	Stop A	1	0	0	1	0	1
Stop B	1	1	0	0	1	0	1
Stop C	1	1	1	1	0	0	1
Stop D	0	1	1	0	1	1	1
Stop E	0	0	1	1	0	0	1
Stop F	0	0	0	0	1	0	1
Stop G	0	0	0	0	0	1	1
\ldots	0	0	0	0	0	0	1
\ldots.	0	0	0	0	0	0	1
Stop N	0	0	0	0	0	0	1

Each Row is a stop
Each Column is a generated vehicle route and its cost Each matrix coefficient, a_{ij}, is $\{0,1\}$, identifying the stops on the j'th route
Define $Y_{j},\{0,1\}$, " 1 " if the route is used ; else " 0 "

Minimize: $\sum_{j} \mathrm{C}_{\mathrm{j}} \mathrm{Y}_{\mathrm{j}}$

Subject to:

$$
\begin{aligned}
& \sum_{\mathrm{j}=1}^{\mathrm{J}} a_{i j} Y_{j} \geq \mathrm{D}_{\mathrm{i}} ; \text { for all I } \\
& \mathrm{Y}_{\mathrm{j}}=\{0,1\}, \text { for all } \mathrm{J}
\end{aligned}
$$

Same Example

- Each tour is a column
- How are tours generated?
- Could each column be a solution?
- How could this be enhanced?

Shortest Path Matrix

$\mathbf{i} \backslash \mathbf{j}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$		10	15	19	22
$\mathbf{1}$			8	23	35
$\mathbf{2}$				12	21
$\mathbf{3}$					5

Total Dist
132

Dec Var	1	1	1	1	0	0	0	0	0	0	0	0	0	0			
		$\begin{array}{\|l} N \\ \\ \vdots \\ 0 \\ \hline \end{array}$							$\begin{array}{\|l} 9 \\ 0 \\ 0 \\ \vdots \\ \\ \hline \end{array}$					$\begin{array}{\|l\|} \hline \left.\begin{array}{l} 1 \\ 0 \\ \\ 0 \\ \\ \hline \end{array} \right\rvert\, \\ \hline \end{array}$	Sum		RHS
Stop 1	1	0	0	0	1	1	1	0	0	0	1	1	1	0	1	$>=$	1
Stop 2	0	1	0	0	1	0	0	1	1	0	1	1	0	1	1	$>=$	1
Stop 3	0	0	1	0	0	1	0	1	0	1	1	0	1	1	1	$>=$	1
Stop 4	0	0	0	1	0	0	1	0	1	1	0	1	1	1	1	$>=$	1
Capacity	1	1	1	1	2	2	2	2	2	2	3	3	3	3			
Distance	20	30	38	44	33	52	67	46	58	46	59	61	60	54			

Regardless of Approach

会 Rules of Thumb

- Good routes are "rounded", not "star shaped"
- Good routes don't cross themselves or others
- Good sectors are "pie shaped", not "checker board"
- Good solutions "look like a daisy"

Good Practice Tips

- Always use a Preview-Analyze-Review methodology
- Periodically visit the internal logic within the TMS
- Never discount the salty expert who has been doing this longer than you've been alive
- Identify all special conditions (customer A must be delivered to first) and then validate or reject them

Other Extensions to VRP

- More dimensions/elements
- Sourcing
- Multiple depot
- Dynamic sourcing (depot varies)
- Order
- Multiple dimensions (e.g. cube, weight)
- Mixed pickup and delivery
- Time window
" "Vendor Managed Inventory"
- Plan
- Fixed / Static / Master
- Variable / Dynamic / Daily
- Zone
- Real-time dispatch
- Resource
- Backhaul
- Continuous moves
- Academic problems
- Multiple Depot VRP (MDVRP)
- Multi-commodity VRP
- Vehicle Routing Problem with Pick-up and Delivering (VRPPD)
- VRP with time windows (VRPTW)
- Inventory Routing Problem (IRP)
- Stochastic VRP (SVRP) minimize expected costs for satisfying realized demand/customers
- Dynamic VRP - redirect trucks during the execution of their route to accommodate new orders
- Vehicle Routing Problem with Backhauls (VRPB)

Fixed vs. Dynamic Route Plans

- Fixed/static routes
- Routes repeat on a cycle
- Daily, weekly, whenever there is sufficient demand
- Routes are changed when customer base changes
- Quarterly, annually
- Routes are based on "forecast" demand
- Routes are designed for "heavy days" related to truck capacity and driver hours
- Primary advantages
- Driver familiarity
- Ease of execution
- Primary disadvantages
- Inefficiency caused by variability
- Difficulty of efficient customer day assignment
- Variable/dynamic routes
- Routes change continually
* Typically every day
- Routes based on "actual" shipment requirements
- Routes are designed for vehicle and driver constraints
- Primary advantages
- Utilization of trucks and drivers
- Flexibility in customer ordering
- Primary disadvantages
- Difficulty of determining optimum routes
- Difficulty of maintaining route planning process
- Execution may not match plan

Real-World Issues

- The real world does not behave according to uniform assumptions
- Dock configuration
- Dock hours
- Trailer types
- Moveable bulkheads (bulk liquids, grocery reefers)
- Truck types
- Truck-trailer combos: doubles \& triples (pups)
- Compatibility: order-vehicle, order-order, vehicle-site
- Preferred customers (big box)
- Driver preferences (seniority, local knowledge)
- Driver skills (service technician)
- Rush hour traffic
- Real-time dispatching (deployed vehicles)
- Refueling
- Maintenance

Element Interactions

- Truck \& Trailer
- Trailers the tractor can handle - length, pups, specialized (e.g. car hauler)
- Vehicle \& Customer
- Must be able to visit the customer (loading dock, cornering, parking)
- Vehicle \& Order
- Products may not be deliverable on certain resources -- HazMat, loading/handling equipment (tanks, racks), capabilities (refrigeration), physical dimensions, etc.
- Vehicle \& Driver
- Not licensed for the truck, not able to load/unload trailer
- Order \& Order
- Products may not mix (lumber \& light bulbs, bottled water \& dehydrated food, etc.)

Manual Planning

* Plan using paper, pencil, and experience
- Advantages
- Cheap and easy
- Challenges
- Cannot generate multiple solutions
- Difficult to evaluate result
- Decentralized

Image of drawn-on map removed due to copyright restrictions.

I nteractive GIS

* Plan using human intuition, guided by simple heuristics
- Advantages
- Evaluation is easier (distance, time, cost calculations, and visual)

人 Challenges

- Time consuming (and typically there is limited time for planning)
- Requires "super-users"
- Need technical aptitude
- Requires regular training
- Typically decentralized

Screenshot removed due to copyright restrictions.

Automated Heuristics

- Plan using construction, local improvement, \& other heuristics
- Advantages
- Provides solutions relatively quickly
- Challenges
- Solution quality hard to predict
- Heuristics that work well for one problem may work poorly for another
- Solution quality from heuristics can change drastically when the data changes
- Hard to know when to settle on a solution
- Complexity
- Not as good if there are complex constraints or shipments vary in size
- Need sophisticated expert to improve or tune
- Typically users stick with the same approach and manually edit plans

Optimization

Column generation and set covering IP

- Advantages
- Determines best solution among the options considered
\diamond Challenges
- Quality depends on quality of options created (column generation)
- Requires significant computing power (parallel computing is advantageous)
- Requires regular maintenance by domain and technology experts

Questions?

