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The Importance of Time

• A dollar in hand now is worth more than a dollar 
received in the future, because of its earning power, 
i.e., it can be invested to generate income.

• The purchasing power of money, i.e., the amount of 
goods that a certain amount can buy, changes with 
time also.

• Objective:    To develop methods for establishing 
the equivalence of sums of money. It depends on the 
amounts, the time of occurrence of the sums of 
money, and the interest rate.
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Overview of Lecture

• The Basics of Interest Rates – Simple and 
Compound Interest

• The Basic Discount Factors – Present Value, 
Future Value, Annual Value

• Economic Equivalence and Net Present Value
• Return to Interest Rates: Nominal and Effective 

Rates
• Inflation
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Simple Interest

• P: Principal amount
• n: Number of interest periods
• i: Interest rate
• I: Interest earned
• Interest and principal become due at the end of n.

I = Pni
• The interest is proportional to the length of time 

the principal amount was borrowed.
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Compound Interest

• Interest is payable at the end of each interest period.
• If the interest is not paid, the borrower is charged interest 

on the total amount owed (principal plus interest).
• Example:  $1,000 is borrowed for two years at 6% 

(compounded).  A single payment will be made at the end of 
the second year.

• Amount owed at the beginning of year 2:  $1,060
• Amount owed at the end of year 2:  

$1,060x1.06 = $1,000x(1.06)2 = $1,123.60

• For simple interest, the amount owed at the end of year 2 
would be:  $1,000 + 1,000x2x0.06 = $1,120.00
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Cash Flows over Time

• Up arrow = we receive $; down arrow = we pay $
• Amount borrowed: $1,000
• Interest is paid at the end of each year at the rate of 

10%.
• The principal is due at the end of the fourth year.

$1,000

$100 $100 $100

$1,100
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The Basic Discount Factors

(future value)

P (present value)

AF
(annual value 
or “annuity”)
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Single-Payment Compound-Amount Factor

• A single payment is made after n periods.
• The interest earned at the end of each period is 

charged on the total amount owed (principal plus 
interest).

• $1 now is worth (F/P,i,n) at time n if invested at i%

P

F= P(1+i)n

1 2

P(1+i) P(1+i)2

n

(F/P, i, n) = (1+i)n
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Single-Payment Present-Worth Factor

• The reciprocal of the single-payment compound 
amount factor.

• Discount rate: i
• $1 n years in the future is worth (P/F, i, n) now.

n)i1(
1)n,i,F/P(
+

=
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Equal-Payment-Series Compound-Amount 
Factor

• Equal payments, A, occur at the end of each period.
• We will get back (F/A, i, n) at the end of period n if funds 

are invested at an interest rate i.
• F = A + A(1+i) + A(1+i)2 +…+ A(1+i)n-1

1 2

n

0

F

A A A

i
1)i1()n,i,A/F(

n −+
=

A

n-1
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Equal-Payment-Series Sinking-Fund 
Factor

• May be used to determine the payments A required 
to accumulate a future amount F.

1)i1(
i)n,i,F/A( n −+

=

Example. We wish to deposit an amount A every 6 months 
for 3 years so that we’ll have $10,000 at the end of this period.  
The interest rate is 5% per year.

n = 6 deposits i = 2.5% per 6-month period
F=$10,000 (A/F, 0.025, 6) = 0.15655 ⇒
A=$1,565.50
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Equal-Payment-Series Capital-Recovery 
Factor (1)

• An amount P is deposited now at an annual interest 
rate i.

• We will withdraw the principal plus the interest in 
a series of equal annual amounts A over the next n 
years.

• The principal will be worth P(1+i)n (slide 8) at the 
end of n years.  This amount is to be recovered by 
receiving A every year ⇒ the sinking-factor 
formula applies (slide 11) ⇒
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Equal-Payment-Series Capital-Recovery 
Factor (2)

Example: Your house mortgage is $300,000 for 30
years with an nominal annual rate of 7%.  What is the
monthly payment?

n = 360 months i = 0.583% per month
(A/P, 0.00583, 360) = 0.006650339⇒
A = 300,000x 0.006650339 = $1,995.10 per month

]
1)i1(

i[)i1(PA n
n

−+
+= ⇒

1i)(1
)i1(i)n,i,P/A( n

n

−+
+=
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Summary of the Formulas

(F/P, i, n) = (1+i)n

i
1)i1()n,i,A/F(

n −+
=

1i)(1
)i1(i)n,i,P/A( n

n

−+
+=

Single-Payment Compound-Amount Factor

Equal-Payment-Series Compound-Amount Factor

Equal-Payment-Series Capital-Recovery Factor
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Continuous Compounding (1)

• Suppose that interest is compounded a very 
large number of times.  Then, the effective 
annual interest rate is

where r is the nominal annual interest rate.

1e1
m

m
r1lim
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m
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Continuous Compounding (2)

(F/P, i, n) = (1+i)n (F/P, r, n) = ern

i
1)i1()n,i,A/F(

n −+
= 1

1)n,r,A/F(
e
e

r

rn

−
−
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Nominal and Effective Interest Rates (1)

• The nominal interest rate (or annual 
percentage rate) is the annual rate without 
the effect of any compounding.

• The effective (actual) interest rate is the 
annual rate taking into account the effect of 
any compounding during the year.

Example: A credit card advertises a nominal rate of 18%
compounded monthly.  The actual rate is, then, (18/12) = 1.5%
per month.  The effective annual rate is 
(1.015)12 – 1 = 0.1956    or    19.56%
(if you do not pay anything each month)
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Nominal and Effective Interest Rates (2)

• The effective interest rate i depends on the 
frequency of compounding.

• Example: nominal interest rate r = 10%
– Compounded annually: i = r = 10% 
– Compounded quarterly: i = (1+0.1/4)4 -1 = 10.38%
– Compounded monthly: i = (1+0.1/12)12 -1 = 10.471%
– Compounded weekly: i  = (1+0.1/52)52 -1 = 10.506%
– Compounded daily: i = (1+0.1/365)365 –1 = 10.516%
– Compounded continuously: i = e0.1 – 1 = 10.517%
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Nominal and Effective Interest Rates (3)

In the formulas we introduced in earlier slides, i is the
effective interest rate for a given period and n is the
number of such periods.

Example: You wish to buy a house and you can afford to
make a down payment of $50,000.  Your monthly mortgage
payment cannot exceed $2,000.  If 30-year loans are available
at 7.5% interest compounded monthly, what is the highest
price that you may consider?
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Nominal and Effective Interest Rates (4)

Solution:

Let’s use one month as the time period.  Then, n = 360
months, and i = (7.5/12) = 0.625%.   We know that 

This yields (A/P, 0.00625, 360) = 0.00699        ⇒
P x 0.00699 = (H - 50,000) x 0.00699 ≤ 2,000 ⇒
H ≤ (2,000/0.00699) + 50,000 = $336,123

1i)(1
)i1(i)n,i,P/A( n

n

−+
+=
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Nominal and Effective Interest Rates (5)

• Let’s use one year as the time period.  Then, n = 30 years, 
and i = (1+0.00625)12 - 1 = 7.763%

Then, (A*/P, 0.07763, 30) = 0.0867       A* = 0.0867P per year

Your effective payment per year is 
A* = $2,000x(F/A, 0.00625, 12) = $2,000x12.4212 = $24,842

P ≤ (24,842/0.0867) + 50,000 = $336,533    as before

Consistency between i and n will lead to identical solutions.
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Economic Equivalence (1)

• The formulas that we have developed establish 
economic equivalence between P and F, an equal-
payment series and F, and so on.

Example: Consider the following cash flow:  You
will receive $500 at the end of years 3 and 4 and
$1,000 at the end of year 5.  If the interest rate is
7%, what amount received at the present is
equivalent to this cash flow? 
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Economic Equivalence (2)

Solution:

P = 408.15 + 381.45 + 712.99 = $1,502.59 

$500 $500

$1,000P

1 2 3 4 5

543 )07.01(
000,1

)07.01(
500

)07.01(
500P

+
+

+
+

+
=
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Economic Equivalence (3)

If the interest is compounded continuously, the result
will be:

P = 405.30 + 377.89 + 704.69 = $1,487.88

eee 07.0x507.0x407.0x3
000,1500500P ++=
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Inflation
• The purchasing power of money declines when the 

prices increase.
• This must be included in equivalence calculations.
• A price index is the ratio of the price of a 

commodity or service at some point in time to the 
price at some earlier point.

• The Consumer Price Index (CPI) represents the 
change in prices of a “market basket,” that includes 
clothing, food, utilities, and transportation.

• The CPI measures the changes in retail prices to 
maintain a fixed standard of living for the 
“average” consumer.
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CPI and Inflation

From Table 5.1 of Thuesen & Fabrycky, Engineering Economy, 7th Edition, 
Prentice Hall, NJ, 2001.

Year Consumer Price
Index (CPI)

(Annual Rate
of Inflation)

100.0
125.3
181.5
246.8
322.2
391.4
456.5
497.6

2.9%
3.3%
6.5%

13.5%
3.6%
5.4%
2.8%
1.9%

1967
1972
1977
1980
1985
1990
1995
1999

Figure by MIT OCW.
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Inflation Rate

Annual inflation rate for year t+1: 

For many calculations, an average inflation rate is
sufficient.

CPIt(1+f)n = CPIt+n

Note: Thuesen & Fabrycky use      for the average rate.

CPI
CPICPI
t

t1t
1tf −
= +

+

f
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Example

The average inflation rate from 1967 to 1999 is given
by

100(1+f)32 = 497.6 ⇒ 1+f = 4.9761/32 = 1.0514

⇒ f = 5.14%
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Definitions

• Market interest rate (or current-dollar interest rate) i: The 
interest rate available in finance. Inflation impact is 
included.  

• Inflation-free interest rate (or constant-dollar interest rate) i':
It represents the earning power of money with inflation 
removed.  It must be calculated.

• Actual dollars: The amount received or disbursed at any 
point in time.

• Constant dollars: The hypothetical amount received or 
disbursed in terms of the purchasing power of dollars at 
some base year.
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Constant and Actual Dollars

• (actual dollars) = (1+f)n (constant dollars)
(based on the purchasing power n years earlier)

• Equivalence in terms of actual dollars:  Use i.

• Equivalence in terms of constant dollars:  Use i'.

• Relationship among i, i', and f:

1
f1
i1i' −

+
+

=
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Proof

Proof: At the base year (t=0), constant and actual dollars
coincide.
Let P be the present value.  Then, n years from now,

F = (1+i)nP actual dollars

F' = (1+ i')nP constant dollars   ⇒
F = (1+f)n F’ = (1+f)n (1+ i’)nP actual dollars ⇒

1
f1
i1i' −

+
+

=



CBA 2. The Time Value of Money 32

Example:  Going to the Movies

• 1967 Ticket Price: $1.25
• 1999 Ticket Price: $8.50
• Has there been a price increase above the rate of 

inflation?
The average rate of inflation has been (slide 28):
f = 5.14%.         The actual rate of increase is 
i = (8.5/1.25)1/32 -1 = 0.0617.          Therefore, 
i' = [(1+0.0617)/(1+0.0514)] - 1 = 0.0098 ≅ 1%
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Example: Investments in Two Countries (1)

John has immigrated to the US where the inflation
rate is 2% while his brother Joe has stayed in the old
country where the inflation rate is 4.5%.  The US
banks give an interest rate of 5.5% while those of the
old country give 8%.
1. What are the real interest rates in the two countries?

%43.31
02.01
055.01

i'
US =−

+
+

= %35.31
045.01
08.01

i'
OC =−

+
+

=
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Example: Investments in Two Countries (2)

2. If John decides to invest in the Old Country, what 
would his real interest rate be?

%88.51
02.01
08.01

i'
OC/US =−

+
+

=

Interest rate of the OC 
(John invests there)

US inflation rate 
(John lives there)
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