Engineering Risk Benefit Analysis

1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.862, 22.82, ESD.72, ESD. 721

DA 2. The Value of Perfect Information

George E. Apostolakis
Massachusetts Institute of Technology

Spring 2007

Recall the evaluation of the survey results Mless (Slide 14, DA 1):

Strong
$\mathrm{P}\left(\mathrm{s} / \mathrm{L}_{2}\right)=0.8 \quad \mathrm{P}\left(\mathrm{s} / \mathrm{L}_{3}\right)=0.2 \quad \mathrm{P}\left(\mathrm{s} / \mathrm{L}_{4}\right)=\mathbf{0 . 0}$

Mild
$\mathrm{P}\left(\mathrm{m} / \mathrm{L}_{2}\right)=0.2 \quad \mathrm{P}\left(\mathrm{m} / \mathrm{L}_{3}\right)=0.6 \quad \mathrm{P}\left(\mathrm{m} / \mathrm{L}_{4}\right)=0.3$

Weak

$$
P\left(w / L_{2}\right)=\frac{0.0}{1.0} \quad P\left(w / L_{3}\right)=\frac{0.2}{1.0} \quad P\left(w / L_{4}\right)=\frac{0.7}{1.0}
$$

Perfect Information (Clairvoyant)

- A clairvoyant, CV, is always correct, i.e.,
$\mathrm{P}\left[\mathrm{CV}\right.$ says $\mathrm{L}_{2} / \mathrm{L}_{2}$ materializes $]=1.0=\mathrm{P}\left[\mathrm{s} / \mathrm{L}_{2}\right]$ $P\left[C V\right.$ says L_{3} / L_{2} materializes $]=0.0=P\left[m / L_{2}\right]$
$\mathrm{P}\left[\mathrm{CV}\right.$ says $\mathrm{L}_{4} / \mathrm{L}_{2}$ materializes $]=0.0=\mathrm{P}\left[\mathbf{w} / \mathrm{L}_{2}\right]$
- Receiving the CV's report removes all uncertainty.

Calculations for "survey result is s" or "survey says $L_{2} "$ (Slide 18, DA 1)

Payoff $\frac{\text { Prior }}{\text { Prob. }}$

\mathbf{L}_{2}	0.3	$\mathbf{P}\left(\mathbf{s} / \mathbf{L}_{2}\right)=\mathbf{0 . 8}$	$\mathbf{0 . 2 4}$	$\mathbf{P}\left(\mathbf{L}_{2} / \mathbf{s}\right)=\mathbf{0 . 7 0 6}$
\mathbf{L}_{3}	0.5	$\mathbf{P}\left(\mathbf{s} / \mathbf{L}_{3}\right)=\mathbf{0 . 2}$	$\mathbf{0 . 1 0}$	$\mathbf{P}\left(\mathbf{L}_{3} / \mathbf{s}\right)=\mathbf{0 . 2 9 4}$
\mathbf{L}_{4}	$\underline{0.2}$	$\mathbf{P}\left(\mathbf{s} / \mathbf{L}_{4}\right)=\mathbf{0 . 0}$	$\underline{\mathbf{0 . 0 0}}$	$\mathbf{P}\left(\mathbf{L}_{4} / \mathbf{s}\right)=\underline{0.000}$
	$\underline{1.0}$		$\mathbf{0 . 3 4}$	

$P\left[L_{2}\right.$ materializes/survey says $\left.L_{2}\right]=0.706$, because the survey is not perfect.

Bayes' Theorem for the Clairvoyant

$P\left[L_{2}\right.$ materializes/ $\mathbf{C V}$ says $\left.\mathbf{L}_{\mathbf{2}}\right]=$
$=\frac{\mathbf{P}\left(\text { CVsays }_{2} / \mathbf{L}_{2} \text { materializes }\right) \times P\left(\mathbf{L}_{2} \text { materializes }\right)}{\sum^{4} \mathbf{P}(\mathrm{CV}}=$
$\sum_{2} P\left(\right.$ CVsaysL $_{2} / L_{i}$ materializes $) \times P\left(L_{i}\right.$ materializes $)$
$=1 \times P\left(\mathrm{~L}_{2}\right.$ materializes $)$
1xP(L_{2} materializes $)+0+0$
$\mathrm{P}\left[\mathrm{L}_{2}\right.$ materializes/ CV says $\left.\mathrm{L}_{2}\right]=1$ regardless of the prior probability, because the CV is perfect.

The original decision tree

Modifications

In a decision tree, the order of the nodes is chronological.

- With perfect information, the uncertainty is resolved before the decision is made (a chance node is followed by a decision node).
- The evaluation is done a priori (before the CV is hired).
- Therefore, the DM believes that the CV will predict L_{2} with probability $0.3, L_{3}$ with probability 0.5 , and L_{4} with probability 0.2 .

Decision tree with a clairvoyant

The value of alpha

$\alpha:$ EMV, if the terminal decision is to be made with perfect information at no cost.

$$
\alpha=0.3 \times 300+0.5 \times 150+0.2 \times 150=\$ 195 K
$$

The value of beta

- What is the EMV without any information?
- We solved this problem in DA 1 (original decision tree).

EMV [no information] $=\$ 150 \mathrm{~K} \equiv \beta$
β : EMV, if the terminal decision is to be made without any opportunity to obtain additional information.
Note:The chance node follows the decision node.

Expected Value of Perfect Information

$$
\begin{gathered}
\text { (EVPI) } \\
\text { EVPI } \equiv \alpha-\beta=\$ 195-\$ 150=\$ 45 \mathrm{~K}
\end{gathered}
$$

- The EVPI is an upper bound on the amount the DM would be willing to pay for additional information.
- The expected value of any information source must be between zero and the EVPI. In DA 1, the cost of the survey was $\$ 20 \mathrm{~K}<\mathrm{EVPI}$.

Decision tree with a clairvoyant

General Tree

- If the DM faces uncertainty in a decision (uncertainty nodes after the decision node), the impact of perfect information will be evaluated by redrawing the tree and reordering the decision and chance nodes.
- The evaluation of perfect information is done a priori. The DM has not yet consulted the clairvoyant. The $D M$ is considering whether to actually do it.

Summary and Observations

- We have developed single-attribute, multi-stage sequential Decision Trees.
- The model is useful to a single decision maker.
- Decision Criterion: Maximize the EMV.
- Maximizing the EMV is not the best decision criterion.

