

Engineering Risk Benefit Analysis 1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.862, 22.82, ESD.72, ESD.721

DA 3. The Axioms of Rational Behavior

George E. Apostolakis Massachusetts Institute of Technology

Spring 2007

Lotteries

- A lottery is a probabilistic trial characterized by a set of mutually exclusive and exhaustive possible outcomes C₁, C₂, ..., C_m, with respective probabilities p₁, p₂, ..., p_m.
- $L(C_1, C_2, ..., C_m; p_1, p_2, ..., p_m)$

Example:

L(\$5, \$0; 0.6, 0.4)

DA 3. The Axioms of Rational Behavior

Preferences exist

For every pair of consequences C_i and C_j, a DM will:

$$\succ \text{ prefer } \mathbf{C}_{\mathbf{i}} \text{ to } \mathbf{C}_{\mathbf{j}} \implies \mathbf{C}_{\mathbf{i}} \succ \mathbf{C}_{\mathbf{j}}$$

 \succ be indifferent between C_i and $C_j \implies C_i \sim C_j$

 \succ prefer C_i to $C_i \implies C_i \prec C_j$

Definition of C^* and C_*

• Define:

- $\succ C^* \text{ a consequence that is } \underline{at \text{ least as}} \text{ preferred as the} \\ \text{most preferred of } C_1 \dots C_m \Rightarrow C^* \succeq C_i \text{ for all i} \\ \end{cases}$
- $\begin{array}{l} \succ C_* \ a \ consequence \ that \ is \ \underline{at \ least \ as} \ low \ in \\ preference \ as \ the \ least \ preferred \ of \ C_1 \ \dots \ C_m \Rightarrow \\ C_* \preceq \ C_i \ for \ all \ i \end{array}$
- C* and C_{*} need not be included in C₁ ... C_m

The desirability of a lottery

It depends on:

- The probabilities
- The consequences

• The person's present wealth, needs, and attitude toward risk.

Axiom 1: Comparison of lotteries with identical consequences

Given: $L_1 = L(C^*, C_*; p_1, 1 - p_1), L_2 = L(C^*, C_*; p_2, 1 - p_2)$ and $C^* \succeq C_i \succeq C_*$ for all i, then a Decision Maker will:

prefer L_1 over L_2 if $p_1 > p_2$,

be indifferent if $p_1 = p_2$

prefer L_2 over L_1 if $p_1 < p_2$.

• Given the same consequences, the DM prefers the lottery with the higher probability of achieving the most desirable consequence.

Axiom 2a: Quantification of preferences

For each C_i , the DM can specify a number $\pi(C_i)$, with $0 \le \pi(C_i) \le 1$, such that the DM is indifferent between:

possessing C_i with certainty

and

possessing the lottery L (C*, C_{*}; $\pi(C_i)$, 1 - $\pi(C_i)$)

Notes on Axiom 2a

- The indifference probability (or "preference value") $\pi(C_i)$ is a measure of the preference of C_i on a range of consequences from C_* to C^* .
- This axiom provides the basis for the development of the metric of "utility" ("preference value").
- From Axiom 1, the DM will prefer C_i for sure over the lottery L (C^{*}, C_{*} ;p , 1 - p), if p < π(C_i).

Axiom 2b: Quantification of uncertainty

Let R be any event. For each R, the DM has a quantity p(R), with $0 \le p(R) \le 1$, such that the DM is indifferent between

- the lottery L (C*, C_{*}; p(R), 1 p(R))
- a lottery as a result of which the DM will obtain C* if R occurs and C_{*} if R does not occur.

Notes on Axiom 2b

• Judgmental probabilities exist for a rational DM.

• This axiom provides the means for finding the DM's probability of R. All the DM has to do is adjust p(R) until he/she is indifferent between the two lotteries.

Axiom 4: Substitution of consequences

If $C_1 \sim C_2$, then the DM is indifferent between two decision problems which are identical except that C_1 in the first problem has been substituted by C_2 in the second.

[If a DM is indifferent between two consequences, the DM's solution to a decision problem cannot be affected by substitution of one of these consequences for the other.]

Axiom 5: Equivalence of preferences for actual and conjectural situations

Let C_1 and C_2 be any two consequences which are possible if only some chance event R occurs. After it is known that R did indeed occur, the DM should have the same preference between C_1 and C_2 that the DM had before (s)he knew whether or not R occurred.

[A DM's preferences among consequences of a decision should not be affected by knowledge as to whether (s)he merely <u>may</u> or (s)he <u>certainly will</u> have to make that decision.]

Summary of Axioms

- <u>Axiom 0:</u> Preferences exist
- <u>Axiom 1:</u> Two simple lotteries, each with same prize and penalty: choose lottery with higher probability of prize
- <u>Axiom 2a:</u> Quantification of preferences ("indifference probability" or "preference value")
- <u>Axiom 2b:</u> Quantification of uncertainty
- <u>Axiom 3:</u> Transitivity of preferences

Summary of Axioms (cont'd)

- <u>Axiom 4:</u> Substitution of consequences
- <u>Axiom 5:</u> Equivalence of preferences for actual and conjectural situations

A DM who satisfies these axioms is <u>rational</u> or <u>coherent</u>.