Engineering Risk Benefit Analysis

1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.862, 22.82, ESD.72, ESD. 721

DA 3. The Axioms of Rational Behavior

George E. Apostolakis
Massachusetts Institute of Technology

Spring 2007

Lotteries

- A lottery is a probabilistic trial characterized by a set of mutually exclusive and exhaustive possible outcomes $\mathrm{C}_{1}, \mathrm{C}_{2}$,
\ldots, C_{m}, with respective probabilities $p_{1}, p_{2}, \ldots, p_{m}$.
- $L\left(C_{1}, C_{2}, \ldots, C_{m} ; p_{1}, p_{2}, \ldots, p_{m}\right)$

Example:
L(\$5, \$0; 0.6, 0.4)

Preferences exist

- For every pair of consequences C_{i} and $\mathrm{C}_{\mathbf{j}}$, a DM will:
$>\operatorname{prefer} \mathrm{C}_{\mathbf{i}}$ to $\mathrm{C}_{\mathbf{j}} \Rightarrow \mathrm{C}_{\mathbf{i}} \succ \mathrm{C}_{\mathrm{j}}$
$>$ be indifferent between C_{i} and $\mathrm{C}_{\mathrm{j}} \quad \Rightarrow \quad \mathrm{C}_{\mathrm{i}} \sim \mathrm{C}_{\mathrm{j}}$
$>\operatorname{prefer} \mathrm{C}_{\mathrm{j}}$ to $\mathrm{C}_{\mathrm{i}} \Rightarrow \quad \mathrm{C}_{\mathrm{i}} \prec \mathrm{C}_{\mathrm{j}}$

Definition of C^{*} and C_{*}

- Define:
$>\mathrm{C}^{*}$ a consequence that is at least as preferred as the most preferred of $C_{1} \ldots C_{m} \Rightarrow C^{*} \succeq C_{i}$ for all i
$>\mathrm{C}_{*}$ a consequence that is at least as low in preference as the least preferred of $\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{m}} \Rightarrow$ $C_{*} \prec C_{i}$ for all i
- C^{*} and C_{*} need not be included in $C_{1} \ldots C_{m}$

The desirability of a lottery

It depends on:

- The probabilities
- The consequences
- The person's present wealth, needs, and attitude toward risk.

Axiom 1: Comparison of lotteries with identical consequences

Given: $L_{1}=L\left(C^{*}, C_{*} ; p_{1}, 1-p_{1}\right), L_{2}=L\left(C^{*}, C_{*} ; p_{2}, 1-p_{2}\right)$ and $C^{*} \succeq C_{i} \succeq C_{*}$ for all i, then a Decision Maker will:
prefer L_{1} over $L_{2} \quad$ if $\quad p_{1}>p_{2}$,
be indifferent
if $\quad \mathbf{p}_{1}=\mathbf{p}_{2}$
prefer L_{2} over $L_{1} \quad$ if $\quad p_{1}<p_{\mathbf{2}}$.

- Given the same consequences, the DM prefers the lottery with the higher probability of achieving the most desirable consequence.

Axiom 2a: Quantification of preferences

For each C_{i}, the $D M$ can specify a number $\pi\left(C_{i}\right)$, with $0 \leq \pi\left(\mathrm{C}_{\mathrm{i}}\right) \leq 1$, such that the DM is indifferent between:
possessing C_{i} with certainty

and

possessing the lottery $L\left(C^{*}, C_{*} ; \pi\left(\mathrm{C}_{\mathrm{i}}\right), 1-\pi\left(\mathrm{C}_{\mathrm{i}}\right)\right)$

Notes on Axiom 2a

- The indifference probability (or "preference value") $\pi\left(\mathrm{C}_{\mathrm{i}}\right)$ is a measure of the preference of C_{i} on a range of consequences from C_{*} to C^{*}.
- This axiom provides the basis for the development of the metric of "utility" ("preference value").
- From Axiom 1, the DM will prefer $\mathrm{C}_{\mathbf{i}}$ for sure over the lottery $L\left(C^{*}, C_{*} ; \mathbf{p}, 1-p\right)$, if $p<\pi\left(C_{i}\right)$.

Axiom 2b: Quantification of uncertainty

Let R be any event. For each R, the $D M$ has a quantity $p(R)$, with $0 \leq p(R) \leq 1$, such that the $D M$ is indifferent between

- the lottery $L\left(C^{*}, C_{*} ; p(R), 1-p(R)\right)$
- a lottery as a result of which the DM will obtain C* if R occurs and C_{*} if R does not occur.

Notes on Axiom 2b

- Judgmental probabilities exist for a rational DM.
- This axiom provides the means for finding the DM's probability of R. All the DM has to do is adjust $p(R)$ until he/she is indifferent between the two lotteries.

Axiom 3: Transitivity of preferences

If $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} are consequences, then:
$\mathrm{C}_{1} \sim \mathrm{C}_{2}$ and $\mathrm{C}_{2} \sim \mathrm{C}_{3}$ implies $\mathrm{C}_{1} \sim \mathrm{C}_{3}$
and
$\mathrm{C}_{1} \succeq \mathrm{C}_{2}$ and $\mathrm{C}_{2} \succeq \mathrm{C}_{3}$ implies $\mathrm{C}_{1} \succeq \mathrm{C}_{3}$

Axiom 4: Substitution of consequences

If $C_{1} \sim C_{2}$, then the $D M$ is indifferent between two decision problems which are identical except that C_{1} in the first problem has been substituted by C_{2} in the second.
[If a DM is indifferent between two consequences, the DM's solution to a decision problem cannot be affected by substitution of one of these consequences for the other.]

actual and conjectural situations

Let C_{1} and C_{2} be any two consequences which are possible if only some chance event \mathbf{R} occurs. After it is known that R did indeed occur, the DM should have the same preference between C_{1} and C_{2} that the DM had before (s)he knew whether or not R occurred.
[A DM's preferences among consequences of a decision should not be affected by knowledge as to whether (s)he merely may or (s)he certainly will have to make that decision.]

Summary of Axioms

- Axiom 0: Preferences exist
- Axiom 1: Two simple lotteries, each with same prize and penalty: choose lottery with higher probability of prize
- Axiom 2a: Quantification of preferences ("indifference probability" or "preference value")
- Axiom 2b: Quantification of uncertainty
- Axiom 3: Transitivity of preferences

Summary of Axioms (cont'd)

- Axiom 4: Substitution of consequences
- Axiom 5: Equivalence of preferences for actual and conjectural situations

A DM who satisfies these axioms is rational or coherent.

