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The Concept of utility

• Utility of a consequence:  A quantification of a 
person's relative preference for that consequence

• A simple extension of the indifference probability 
(or "preference value") concept (Axiom 2a)

• Utility function:  Expresses a person's relative 
preferences among a set of consequences (often 
defined over a continuous range)
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Axiom 2a:  Quantification of preferences

• For each Ci, the DM can specify a number π(Ci), 
with 0 ≤ π(Ci) ≤ 1, such that the DM is indifferent 
between 

possessing Ci with certainty

and

possessing the lottery L (C*, C*; π(Ci), 1 -π(Ci))
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Schematic representation
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Preference measures for lotteries
• Having established the relative preferences, i.e., the π(Ci ), i = 1,…,m, 

we can derive the relative preferences for lotteries.

Recall Axiom 1: Given 

L1 = L (C*, C*; p1 , 1 - p1) and L2 = L (C*, C*; p2 , 1 - p2)

Then: L1 L2 if   p1 > p2

L1 L2 if   p1 < p2; L2 ~ L1 if    p1 = p2

⇒ The probabilities p1 and p2 are the preference measures of the two 
lotteries.
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Schematic representation (cont’d)
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Preference value of a lottery

The DM is indifferent between the original lottery on
slide 4 and the last lottery on slide 6.  The preference
value of the latter is 

Conclusion:The preference value for a lottery is 
the expectation of the preference values of the 
possible outcomes of the lottery.
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Utility

• The indifference probability or any positive linear 
transformation of the form

U(x) = a π(x) + b a>0

is said to be a utility function over the set of 
consequences.

Convention: x = 0 represents the present assets 
of the DM.
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Certainty Equivalent of a Lottery

• The certainty equivalent (CE) of a lottery L is a 
consequence such that the DM is indifferent 
between the certainty equivalent and the lottery.

[Note:  U(CE) = U(L)]
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Risk Premium for a Lottery

• The risk premium (RP) for a single-attribute lottery is 
given by

RP = EMV - CE

• For risk-averse individuals, RP is a positive quantity.  
Often, in practice, RP also decreases as additional wealth is 
acquired.

Example: If a DM has a CE of $40 for the lottery
L($100, $0; 0.5, 0.5), then his RP is $50 - $40 = $10.
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Utility of outcomes

Let the utility of payoffs be
U(x) = 1.18 ln(x+5) - 1.29
-2 ≤ x ≤ 2     (x in $M)
[U(2) = 1, U(-2)= 0]

For L(2, -2; 0.5, 0.5) EMV = 0
U(L) = 0.5x1 +0.5x0 = 0.5 = U(CE)
CE = -0.442M 
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Marketing a new product
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Decision tree with utilities
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Choice of decision option

• If the DM chooses to market the new product, 
(s)he is choosing a lottery with preference value 
0.855.

• If the DM chooses to market the old product, (s)he 
is choosing a lottery with preference value 0.920.

• Since  0.920 > 0.855,  the DM should market the 
old product.
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Decision Rule:  Maximization of expected utility

• Each possible consequence is replaced by its 
utility.

• Each decision option is a lottery whose preference
value is the expected utility of its outcomes.

• Choose the option with the highest preference 
value.

• This is the result of accepting the axioms (unlike 
the maximization of the EMV).
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The survey problem

Figure by MIT OCW.
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Best Decision

• Do not buy the survey and keep marketing the old 
product.

• The best decision using EMV was to buy the 
survey and act according to its results, i.e., if the 
result is “strong,” then market the new product, 
otherwise market the old product.
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