

Engineering Risk Benefit Analysis

1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.862, 22.82, ESD.72, ESD.721

DA 5. Risk Aversion

George E. Apostolakis Massachusetts Institute of Technology

Spring 2007

DA 5. Risk Aversion

Calibration of utility functions

• We can apply a positive linear transformation to a utility function and get an equivalent utility function.

$$\pi(\mathbf{x}) = \mathbf{a} \ \mathbf{U}(\mathbf{x}) + \mathbf{b} \qquad \mathbf{a} > \mathbf{0}$$

• A calibrated utility function is such that

 $\pi(C_*) = 0$ and $\pi(C^*) = 1$

The Buying Price for a Lottery

- It is the purchase price at which the DM is indifferent between the alternatives of buying the lottery and not buying it.
- Let $\pi(x)$ the DM's utility function with $\pi(0)$ the utility of his present assets, i.e., *before* he buys the lottery.

Example

- $\pi(x) = 1.18 \ln(x+5) 1.29 \implies \pi(0) = 0.61$
- L(1, 0; 0.5, 0.5)
- $0.5 \pi (1-BP) + 0.5 \pi (0-BP) = 0.61 \implies$
- $1.18 \ln(6-BP) 1.29 + 1.18 \ln(5-BP) 1.29 = 1.22$
- $\ln(6\text{-BP}) + \ln(5\text{-BP}) = 3.22 \implies$

Example (cont'd)

- $\ln[(6-BP)(5-BP)] = 3.22$
- $(BP)^2 11(BP) + 30 = exp(3.22) = 25.04$
- $(BP)^2 11(BP) + 4.96 = 0$
- **BP** = 0.47 (the other root is 10.53 and is rejected)
- EMV = $1x0.5 + 0x0.5 = 0.5 > 0.47 \implies \text{risk aversion}$

The Selling Price of a Lottery

- **SP** = **CE** (certainty equivalent)
- We now interpret x = 0 to represent the DM's total assets *except* of the lottery.
- Utility of present wealth (situation) is $\pi(L)$.
- $\pi(x) = 1.18 \ln(x+5) 1.29 \implies \pi(0) = 0.6091$

Risk Aversion

- The DM is always willing to sell any lottery for less than its expected monetary value.
- $L(x_1, x_2; p_1, p_2)$ $EMV = p_1 x_1 + p_2 x_2$
- $U(p_1 x_1 + p_2 x_2) = U(EMV) > p_1 U(x_1) + p_2 U(x_2)$
- A DM with a *concave* utility for money will refuse a monetarily fair bet and is said to be *risk averse*.

Example

- L(1, 0; 0.5, 0.5)
- EMV = $0.5 \text{ M} \Rightarrow \pi(0.5) = 0.6091$
- $0.5 \pi(1) + 0.5 \pi(0) = 0.7167 \implies SP = \0.4771
- *Risk Premium* = $EMV CE = 0.5 0.4771 \Rightarrow$
- RP =\$0.0229 M

Risk Aversion and Insurance

- You own a house worth \$500,000.
- A fire (p = 10⁻² per year) may destroy it completely.
- Your utility function is
- $\pi(x) = 1.18 \ln(x+5) 1.29;$ C^{*} = \$2M, C_{*} = -\$2M
- How much premium would you be willing to pay?

Utilities

- $\pi(I) = \pi(-x)$ $\pi(NI) = p \pi(-0.5) + (1-p) \pi(0.0)$
- $\pi(-0.5) = 1.18\ln(4.5) 1.29 = 0.4848$
- $\pi(0.0) = 0.6091$
- $\pi(NI) = 0.4848 \times 10^{-2} + (1 10^{-2}) \times 0.6091 = 0.6078$
- $\pi(-x) = 0.6078 \implies x = \$5,661$

Your Perspective

- You are willing to pay up to \$5,661 to insure your house.
- The expected loss is

 $10^{-2} \ge 500,000 = 5,000 < 5,661 \implies$

You are willing to pay more than the expected loss because you are risk averse.

The Company's Perspective

- Why would the insurance company agree to insure you?
- The company may win \$5,661 with probability 0.99 or lose \$494,339 with probability 10⁻².

The Company's Perspective (2)

- The company has \$1 billion dollars in assets. Its wealth is either \$999,505,661 with probability 10⁻², or \$1,000,005,661 with probability 0.99.
- For such small changes, the company's utility of money is linear, i.e., the company makes decisions using the EMV.

• EMV = 5,661 x 0.99 - 494,339 x 10^{-2} = \$661

The Company's Perspective (3)

• The alternative is for the company to refuse the premium, in which case the EMV is zero.

• The company should agree to insure the house.

• <u>Note:</u> The company's overhead expenses have not been factored in.

- 2. Consider the reference lottery $L_1(C^*, C_*; 0.5, 0.5)$
- Its certainty equivalent is derived by solving

 $U(CE_1) = 0.5 U(C^*) + 0.5 U(C_*) = 0.5$

Assessment Using Certainty Equivalents (2)

Thus, we have found a third point of the utility function, that with utility 0.5.

3. Repeat the process with a new reference lottery $L_2(C^*, CE_1; 0.5, 0.5)$

Solve

 $U(CE_2) = 0.5 U(C^*) + 0.5 U(CE_1) = 0.75$

to get a fourth point of the utility function, CE₂.

DA 5. Risk Aversion

Assessment Using Certainty Equivalents (3)

4. Repeat using $L_3(CE_1, C_*; 0.5, 0.5) \Rightarrow$

$U(CE_3) = 0.5 U(CE_1) + 0.5 U(C_*) = 0.25$

to get a fifth point, and so on.

DA 5. Risk Aversion