

Engineering Risk Benefit Analysis 1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.862, 22.82 ESD.72J, ESD.721

RPRA 1. The Logic of Certainty

George E. Apostolakis Massachusetts Institute of Technology

Spring 2007

Event Definition

•*Event:* A statement that can be true or false.

•"It may rain tonight" is not an event.

•According to our current state of knowledge, we may say that an event E is TRUE, FALSE, or POSSIBLE (UNCERTAIN).

•Eventually, E will be either TRUE or FALSE.

Venn Diagrams

- Sample Space: The set of all possible outcomes of an experiment. Each elementary outcome is represented by a sample point.
- *Examples*: Die {1,2,3,4,5,6}

• A collection of *sample points* is an event.

Union (OR operation) $A \cup B = C$ $X_C = 1 - (1 - X_A)(1 - X_B)$ $X_C \equiv \prod X_j$

$$\begin{split} X_T &= 1 - (1 - Y_1)(1 - Y_2) \\ &= 1 - (1 - X_A X_B X_C) \{ 1 - [1 - (1 - Z_1)(1 - Z_2)(1 - Z_3)] \} \\ &= 1 - (1 - X_A X_B X_C) \{ 1 - [1 - (1 - X_A X_B)(1 - X_B X_C)(1 - X_C X_A)] \} \end{split}$$

Expanding and using $X^k = X$ we get

$$X_{T} = 1 - (1 - X_{A}X_{B})(1 - X_{B}X_{C})(1 - X_{C}X_{A})$$

Cut sets and minimal cut sets

• *CUT SET*: Any set of events (failures of components and human actions) that cause system failure.

• *MINIMAL CUT SET*: A cut set that does not contain another cut set as a subset.

Minimal cut sets:

$$M_{1} = X_{A} X_{B}, \qquad M_{2} = X_{B} X_{C}, \qquad M_{3} = X_{C} X_{A}$$
$$X_{T} = \prod_{1}^{3} M_{j} \equiv 1 - (1 - M_{1})(1 - M_{2})(1 - M_{3}) =$$
$$= 1 - (1 - X_{A} X_{B})(1 - X_{B} X_{C})(1 - X_{C} X_{A})$$
$$\underset{\text{RPRA 1. The Logic of Certainty}}{\text{Homogeneously}}$$

14

 $X_T = \phi(X_1, X_2, \dots, X_n) \equiv \phi(\underline{X})$

$\phi(\underline{X})$ is the <u>structure or switching function</u>.

It maps an n-dimensional vector of 0s and 1s onto 0 or 1.

Disjunctive Normal Form:

$$X_{T} = 1 - \prod_{1}^{N} (1 - M_{i}) \equiv \prod_{1}^{N} M_{i}$$

Sum-of-Products Form:

$$X_T = \sum_{i=1}^N M_i - \sum_{i=1}^{N-1} \sum_{j=i+1}^N M_j M_j + \dots + (-1)^{N+1} \prod_{i=1}^N M_i$$

For the 2-out-of-3 System:

 $X_T = 1 - (1 - X_A X_B) (1 - X_B X_C) (1 - X_C X_A)$

 $X_T = (M_1 + M_2 + M_3) - (M_1 M_2 + M_2 M_3 + M_3 M_1) + M_1 M_2 M_3$

But,

$$M_1M_2 = X_A X_B^2 X_C = X_A X_B X_C$$

Therefore, the sum-of-products expression is:

 $X_T = (X_A X_B + X_B X_C + X_C X_A) - 2X_A X_B X_C$

Sum-of-Products Form:

$$X_{T} = X_{1}X_{2} + X_{3}X_{4} + X_{2}X_{3}X_{5} + X_{1}X_{4}X_{5} - X_{1}X_{2}X_{3}X_{4} - X_{1}X_{2}X_{3}X_{5} - X_{1}X_{2}X_{4}X_{5} - X_{2}X_{3}X_{4}X_{5} - X_{1}X_{3}X_{4}X_{5} - X_{1}X_{3}X_{4}X_{5} + 2X_{1}X_{2}X_{3}X_{4}X_{5}$$

Causes of Failure

- **1. Primary failure (''hardware'' failure)**
- 2. Secondary failure (external, environmental)
- **3. "Command" failure (no input; no power)**

Reliability Block Diagram for the Fuel-Supply System

<u>Note</u>: It's helpful to start the fault-tree development from the output of the system (the top event) and work backwards.

System min cut sets

Any combination of an element of

T1, Tank
P1, Pump
V1. Valveand ofT2, Tank
P2, Pump
V2. Valve

plus	С	Control System
		or
	Έ	Electric Power
		Source
		or
	CO	Cooling System

Example of event tree analysis with fault trees

~

 ${}^{\circ}$

650

Examples of Initiating Events

- Loss of Coolant
- Transients
- Human Error
- Loss of Power
- Fires
- Airplane Crashes
- Earthquakes